Commercial growth regulator has adverse effect over soybean seedlings under different cadmium levels

  • Guilherme S. Francischini West Paulista Plant Ecophysiology Center (CEVOP), University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares, 572 Km. Presidente Prudente, SP
  • Hélida R. Sala West Paulista Plant Ecophysiology Center (CEVOP), University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares, 572 Km. Presidente Prudente, SP
  • Inaê Braga-Reis West Paulista Plant Ecophysiology Center (CEVOP), University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares, 572 Km. Presidente Prudente, SP
  • Adriana Lima-Moro West Paulista Plant Ecophysiology Center (CEVOP), University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares, 572 Km. Presidente Prudente, SP
  • Suzana C. Bertoli West Paulista Plant Ecophysiology Center (CEVOP), University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares, 572 Km. Presidente Prudente, SP
Keywords: antioxidant activity, heavy metals, morphology, synthetic hormones, Glycine max

Abstract

Aim of study: Soils contaminated by heavy metals, such as cadmium, may reduce plant development. Exogenous application of plant growth regulators (PGR), are used for optimizing the crops production in stressful environments. The aim of this study was to evaluate the effects of Cd concentrations on the development of soybean seedlings under exogenous application of a commercial PGR.

Area of study: Presidente Prudente, São Paulo, Brazil.

Material and methods: Soybean seeds were pre-treated in distilled water (control treatment) and in solution with plant growth regulator (PGR treatment) and then germinated with distillated water. The germinated seeds were transferred to different levels of Cd (0, 100, 500 and 900 mg of Cd).

Main results: Cd exposure at increasing concentrations, decreased root development, (area, length and volume of roots) and activity of enzymatic antioxidants (SOD, CAT and APX) and enhanced MDA. These responses were accentuated by the PGR exposition. The root morphology and activity of antioxidant enzymes presented "hormesis" responses until 500 mg L-1 of Cd, and the proline content may have played a fundamental role in the maintenance of metabolic activities and biomass.

Research highlights: The results indicate that the use of PGR intensified the toxicity responses caused by exposure to increased Cd level. In addition, stress indicators such as MDA content and antioxidant activity in different organs (root and shoot) of soybean seedlings, responded differently according with the use of PGR under exposure of Cd.

Downloads

Download data is not yet available.

References

Agami RA, Mohamed GF, 2013. Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicol Environ Safety 94: 164-171. https://doi.org/10.1016/j.ecoenv.2013.04.013

Agarwal S, Sairam RK, Srivastava GC, Tyagi A, Meena RC, 2005. Role of ABA, salicylic acid, calcium and hydrogen peroxide on antioxidant enzymes induction in wheat seedlings. Plant Sci 169: 559-570. https://doi.org/10.1016/j.plantsci.2005.05.004

Alam MGM, Snow ET, Tanaka A, 2003. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh. Sci Total Environ 308: 83-96. https://doi.org/10.1016/S0048-9697(02)00651-4

Albrecht LP, Braccini A de L, Alberto Scapim C, Ávila MR, Albrecht AJP, 2012. Plant growth regulator in the chemical composition and yield of soybeans. Ciênc Agronômica 43: 774-782. https://doi.org/10.1590/S1806-66902012000400020

Alonso-Ramirez A, Rodriguez D, Reyes D, Jimenez J, Nicolas G, Lopez-Climent M, Gomez-Cadenas A, Nicolas C, 2009. Evidence for a role of gibberellins in salicylic acid modulated early plant responses to abiotic stress in Arabidopsis thaliana seeds. Plant Physiol 150: 1335-1344. https://doi.org/10.1104/pp.109.139352

Bates LS, Waldren RP, Teare ID, 1973. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. https://doi.org/10.1007/BF00018060

Bermudez GMA, Moreno M, Invernizzi R, Plá R, Pignata ML, 2010. Heavy metal pollution in topsoils near a cement plant: The role of organic matter and distance to the source to predict total and HCl-extracted heavy metal concentrations. Chemosphere 78: 375-381. https://doi.org/10.1016/j.chemosphere.2009.11.012

Bücker-Neto L, Paiva ALS, Machado RD, Arenhart RA, Margis-Pinheiro M, 2017. Interactions between plant hormones and heavy metals responses. Genet Mol Biol 40: 373-386. https://doi.org/10.1590/1678-4685-gmb-2016-0087

Cato SC, Macedo WR, Peres LEP, Castro PRC, 2013. Sinergism among auxins, gibberellins and cytokinins in tomato cv. Micro-Tom. Hortic Bras 31 (4): 549-553. https://doi.org/10.1590/S0102-05362013000400007

Cornu JY, Bakoto R, Bonnard O, Bussière S, Coriou C, Sirguey C, Sterckeman T, Thunot S, Visse MI, Nguyen C, 2016. Cadmium uptake and partitioning during the vegetative growth of sunflower exposed to low Cd2+ concentrations in hydroponics. Plant Soil 404: 263-275. https://doi.org/10.1007/s11104-016-2839-8

Dazy M, Béraud E, Cotelle S, Meux E, Masfaraud JF, Férard JF, 2008. Antioxidant enzyme activities as affected by trivalent and hexavalent chromium species in Fontinalis antipyretica Hedw. Chemosphere 73: 281-290. https://doi.org/10.1016/j.chemosphere.2008.06.044

Dey SK, Dey J, Patra S, Pothal D, 2007. Changes in the antioxidative enzyme activities and lipid peroxidation in wheat seedlings exposed to cadmium and lead stress. Braz J Plant Physiol 19: 53-60. https://doi.org/10.1590/S1677-04202007000100006

Emamverdian A, Ding Y, Mokhberdoran F, Xie Y, 2015. Heavy metal stress and some mechanisms of plant defense response. Sci World J 2015: 18. https://doi.org/10.1155/2015/756120

Farooq M, Nawaz A, Chaudhry MAM, Indrasti R, Rehman A, 2017. Improving resistance against terminal drought in bread wheat by exogenous application of proline and gamma-aminobutyric acid. J Agron Crop Sci 203: 464-472. https://doi.org/10.1111/jac.12222

Gangwar S, Singh VP, Prasad SM, Maurya JN, 2010. Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. SciHortic 126: 467-474. https://doi.org/10.1016/j.scienta.2010.08.013

Gangwar S, Singh VP, Srivastava PK, Maurya JN, 2011. Modification of chromium (VI) phytotoxicity by exogenous gibberellic acid application in Pisum sativum (L.) seedlings. Acta Physiol Plant 33: 1385-1397. https://doi.org/10.1007/s11738-010-0672-x

Gangwar S, Singh VP, Tripathi DK, Chauhan DK, Prasad SM, Maurya JN, 2014. Plant responses to metal stress: the emerging role of plant growth hormones in toxicity alleviation. In: Emerging technologies and management of crop stress tolerance, Ahmad P &Rasool S (eds). Academic, Tokyo, pp: 215-248. https://doi.org/10.1016/B978-0-12-800875-1.00010-7

Ghanem ME, Albacete A, Martínez-Andújar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S, Pérez-Alfocea F, 2008. Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.). J Exp Bot 59: 3039-3050. https://doi.org/10.1093/jxb/ern153

Giannopolitis CN, Ries SK, 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol 59: 309-314. https://doi.org/10.1104/pp.59.2.309

Gomes-Junior RA, Moldes CA, Delite FS, Pompeu GB, Gratão PL, Mazzafera P, Lea PJ, Azevedo RA, 2006. Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65: 1330-1337. https://doi.org/10.1016/j.chemosphere.2006.04.056

Hasan SA, Fariduddin Q, Ali B, Hayat S, Ahmad A, 2009. Cadmium: Toxicity and tolerance in plants. J Environ Biol 30: 165-174.

Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A, 2012. Role of proline under changing environments: A review. Plant Signal Behav 7 (11): 1456-1466. https://doi.org/10.4161/psb.21949

He J, Qin J, Long L, Ma Y, Li H, Li K, Jiang X, Liu T, Polle A, Liang Z, et al., 2011. Net cadmium flux and accumulation reveal tissue-specific oxidative stress and detoxification in Populus × canescens. Physiol Plantarum 143: 50-63. https://doi.org/10.1111/j.1399-3054.2011.01487.x

Hsu YT, Kao CH, 2003. Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings. Plant Cell Environ 26: 867-874. https://doi.org/10.1046/j.1365-3040.2003.01018.x

Jain M, Pal M, Gupta P, Gadre R, 2007. Effect of cadmium on chlorophyll biosynthesis and enzymes of nitrogen assimilation in greening maize leaf segments: Role of 2-oxoglutarate. Ind J Exp Biol 45: 485-489.

Jiang M, Zhang J, 2001. Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42: 1265-1273. https://doi.org/10.1093/pcp/pce162

Kavi Kishor PB, Sangam S, Amrutha RN, Sri Laxmi P, Naidu KR, Rao KRSS, Rao S, Reddy KJ, Theriappan P, Sreenivasulu N, 2005. Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: Its implications in plant growth and abiotic stress tolerance. Curr Sci 88: 424-438.

Khan DA, Ali Z, Iftikhar S, Amraiz D, Zaidi N-SS, Gul A, Babar MM, 2018. Role of phytohormones in enhancing antioxidant defense in plants exposed to metal/metalloid toxicity. In: Plants under metal and metalloid stress: responses, tolerance and remediation; Hasanuzzaman M et al. (eds). Springer Singapore, pp: 367-400. https://doi.org/10.1007/978-981-13-2242-6_14

Krishnamurthy A, Rathinasabapathi B, 2013. Oxidative stress tolerance in plants: novel interplay between auxin and reactive oxygen species signaling. Plant Signal Behav 8 (10): e25761. https://doi.org/10.4161/psb.25761

Kumar GP, Prasad MN V., 2004. Cadmium toxicity to Ceratophyllum demersum L.: morphological symptoms, membrane damage, and ion leakage. Bull Environ Contamin Toxicol 72: 1038-1045. https://doi.org/10.1007/s00128-004-0348-6

Kuriakose SV, Prasad MNV, 2008. Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul 54: 143-156. https://doi.org/10.1007/s10725-007-9237-4

Lamb C, Dixon RA, 1997. Oxidative burst and plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48: 251-275. https://doi.org/10.1146/annurev.arplant.48.1.251

Liu L, Shang Y, Li L, Chen YH, Qin ZZ, Zhou LJ, Yuan M, Ding CB, Liu J, Huang Y, et al., 2018. Cadmium stress in Dongying wild soybean seedlings: growth, Cd accumulation, and photosynthesis. Photosynthetica 56: 1346-1352. https://doi.org/10.1007/s11099-018-0844-2

Liu TT, Wu P, Wang LH, Zhou Q, 2011. Response of soybean seed germination to cadmium and acid rain. Biol Trace Elem Res 144: 1186-1196. https://doi.org/10.1007/s12011-011-9053-6

Marques DN, Amaral Carvalho ME, Piotto FA, Batagin-Piotto KD, Nogueira ML, Gaziola SA, Azevedo RA, 2019. Antioxidant defense response in plants to cadmium stress. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815794-7.00016-3

Masood A, Iqbal N, Khan NA, 2012. Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant Cell Environ 35: 524-533. https://doi.org/10.1111/j.1365-3040.2011.02432.x

Milone MT, Sgherri C, Clijsters H, Navari-Izzo F, 2003. Antioxidative responses of wheat treated with realistic concentration of cadmium. Environ Exp Bot 50: 265-276. https://doi.org/10.1016/S0098-8472(03)00037-6

Monni S, Uhlig C, Hansen E, Magel E, 2001a. Ecophysiological responses of Empetrum nigrum to heavy metal pollution. Environ Pollut 112: 121-129. https://doi.org/10.1016/S0269-7491(00)00125-1

Monni S, Uhlig C, Junttila O, Hansen E, Hynynen J, 2001b. Chemical composition and ecophysiological responses of Empetrum nigrum to aboveground element application. Environ Pollut 112: 417-426. https://doi.org/10.1016/S0269-7491(00)00139-1

Nasser Alyemeni M, Ahanger MA, Wijaya L, Alam P, Ahmad P, 2017. Contrasting tolerance among soybean genotypes subjected to different levels of cadmium stress. Pak J Bot 49: 903-911.

Neumann H, Bode-Kirchhoff A, Madeheim A, Wetzel A, 1998. Toxicity testing of heavy metals with the rhizobium-legume symbiosis: high sensitivity to cadmium and arsenic compounds. Environ Sci Pollut Res 5: 28-36. https://doi.org/10.1007/BF02986371

Nouairi I, Ammar W Ben, Youssef N Ben, Daoud DBM, Ghorbal MH, Zarrouk M, 2006. Comparative study of cadmium effects on membrane lipid composition of Brassica juncea and Brassica napus leaves. Plant Sci 170: 511-519. https://doi.org/10.1016/j.plantsci.2005.10.003

Pandey C, Gupta M, 2015. Selenium and auxin mitigates arsenic stress in rice (Oryza sativa L.) by combining the role of stress indicators, modulators and genotoxicity assay. J Hazard Mat 287: 384-391. https://doi.org/10.1016/j.jhazmat.2015.01.044

Peixoto PHP, Cambraia J, Sant'Anna R, Mosquim PR, Moreira MA, 1999. Aluminum effects on lipid peroxidation and on the activities of enzymes of oxidative metabolism in sorghum. Rev Bras Fisiol Veg 11: 137-143.

Pérez-Chaca MV, Rodríguez-Serrano M, Molina AS, Pedranzani HE, Zirulnik F, Sandalio LM, Romero-Puertas MC, 2014. Cadmium induces two waves of reactive oxygen species in Glycine max (L.) roots. Plant Cell Environ 37: 1672-1687. https://doi.org/10.1111/pce.12280

Piotrowska-Niczyporuk A, Bajguz A, 2014. The effect of natural and synthetic auxins on the growth, metabolite content and antioxidant response of green alga Chlorella vulgaris (Trebouxiophyceae). Plant Growth Regul 73: 57-66. https://doi.org/10.1007/s10725-013-9867-7

Piršelová B, Kuna R, Libantová J, Moravčíková J, Matušíková I, 2011. Biochemical and physiological comparison of heavy metal-triggered defense responses in the monocot maize and dicot soybean roots. Mol Biol Rep 38: 3437-3446. https://doi.org/10.1007/s11033-010-0453-z

Prasad MNV, Strzalka K (eds), 2002. Physiology and biochemistry of metal toxicity and tolerance in plants. Springer Netherlands, Dordrecht. https://doi.org/10.1007/978-94-017-2660-3

Rask KA, Johansen JL, Kjøller R, Ekelund F, 2019. Differences in arbuscular mycorrhizal colonisation influence cadmium uptake in plants. Environ Exp Bot 162: 223-229. https://doi.org/10.1016/j.envexpbot.2019.02.022

Rodriguez JH, Klumpp A, Fangmeier A, Pignata ML, 2011. Effects of elevated CO2 concentrations and fly ash amended soils on trace element accumulation and translocation among roots, stems and seeds of Glycine max (L.) Merr. J Hazard Mat 187: 58-66. https://doi.org/10.1016/j.jhazmat.2010.11.068

Romero-Puertas MC, Rodríguez-Serrano M, Corpas FJ, Gómez M, Del Río LA, Sandalio LM, 2004. Cadmium-induced subcellular accumulation of O2.- and H2O2 in pea leaves. Plant Cell Environ 27: 1122-1134. https://doi.org/10.1111/j.1365-3040.2004.01217.x

Sabiha-Javied, Tufail M, Khalid S, 2008. Heavy metal pollution from medical waste incineration at Islamabad and Rawalpindi, Pakistan. Microchem J 90: 77-81. https://doi.org/10.1016/j.microc.2008.03.010

Salazar MJ, Rodriguez JH, Nieto GL, Pignata ML, 2012. Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J Hazard Mat 233-234: 244-253. https://doi.org/10.1016/j.jhazmat.2012.07.026

Schützendubel A, Schwanz P, Teichmann T, Gross K, Laugenfeld-Heyser R, Godbold A, Polle A, 2002. Cadmium induced changes in antioxidative systems, H2O2 content and differentiation in Scots pine (Pinus sylvestris) roots. Plant Physiol 127: 887-898. https://doi.org/10.1104/pp.010318

Shah K, Nongkynrih JM, 2007. Metal hyperaccumulation and bioremediation. Biol Plantarum 51: 618-634. https://doi.org/10.1007/s10535-007-0134-5

Smirnoff N, 2005. Antioxidants and ROS in plants, 1st ed; Smirnoff N (ed). Blackwell Publ, Oxford, UK.

Somashekaraiah BV, Padmaja K, Prasad ARK, 1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris): Involvement of lipid peroxides in chlorphyll degradation. Physiol Plantarum 85 (1): 85-89. https://doi.org/10.1111/j.1399-3054.1992.tb05267.x

Souza RP, Machado EC, Silva JAB, Lagôa AMMA, Silveira JAG, 2004. Photosynthetic gas exchange, chlorophyll fluorescence and some associated metabolic changes in cowpea (Vigna unguiculata) during water stress and recovery. Environ Exp Bot 51: 45-56. https://doi.org/10.1016/S0098-8472(03)00059-5

Štolfa I, Pfeiffer TŽ, Špoljarić D, Teklić T, Lončarić Z, 2015. Heavy metal-induced oxidative stress in plants: response of the antioxidative system. In: Reactive oxygen species and oxidative damage in plants under stress, Gupta DK et al. (eds). Springer, Cham, pp: 1-370. https://doi.org/10.1007/978-3-319-20421-5_6

Stroiński A, Kozłowska M, 1997. Cadmium-induced oxidative stress in potato tuber. Acta Soc Bot Poloniae 66: 189-195. https://doi.org/10.5586/asbp.1997.024

Sytar O, Kumar A, Latowski D, Kuczynska P, Strzalka K, Prasad MNV, 2013. Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol Plant 35: 985-999. https://doi.org/10.1007/s11738-012-1169-6

Tandon SA, Kumar R, Parsana S, 2015. Auxin treatment of wetland and non-wetland plant species to enhance their phytoremediation efficiency to treat municipal wastewater. J Sci Ind Res 74: 702-707.

Tester M, 2003. Na+ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-527. https://doi.org/10.1093/aob/mcg058

Tognetti VB, Mühlenbock P, van Breusegem F, 2012. Stress homeostasis - the redox and auxin perspective. Plant Cell Environ 35: 321-333. https://doi.org/10.1111/j.1365-3040.2011.02324.x

Trivedi S, Ansari AA, 2015. Molecular mechanisms in the phytoremediation of heavy metals from coastal waters. In: Phytoremediation. Springer Int Publ, Cham, pp: 219-231. https://doi.org/10.1007/978-3-319-10969-5_19

Ulusu Y, Öztürk L, Elmastaş M, 2017. Antioxidant capacity and cadmium accumulation in parsley seedlings exposed to cadmium stress. Russ J Plant Physiol 64: 883-888. https://doi.org/10.1134/S1021443717060139

Vieira EL, Santos CMG, 2005. Stimulate® na germinação de sementes, vigor de plântulas e crescimento inicial do algodoeiro. V Congresso Brasileiro de Algodão, Salvador - BA (Brazil), Aug 29-Sep 1. pp: 163-163.

Vollmann J, Lošák T, Pachner M, Watanabe D, Musilová L, Hlušek J, 2015. Soybean cadmium concentration: validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203: 177-184. https://doi.org/10.1007/s10681-014-1297-8

Wuana RA, Okieimen FE, 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int Schol Res Network Ecol 2011: 402647. https://doi.org/10.5402/2011/402647

Xu S, Li J, Zhang X, Wei H, Cui L, 2006. Effects of heat acclimation pretreatment on changes of membrane lipid peroxidation, antioxidant metabolites, and ultrastructure of chloroplasts in two cool-season turfgrass species under heat stress. Environ Exp Bot 56: 274-285. https://doi.org/10.1016/j.envexpbot.2005.03.002

Yan H, Hu X, Li F, 2012. Leaf photosynthesis, chlorophyll fluorescence, ion content and free amino acids in Caragana korshinskii Kom exposed to NaCl stress. Acta Physiol Plant 34: 2285-2295. https://doi.org/10.1007/s11738-012-1029-4

Yan H, Filardo F, Hu X, Zhao X, Fu DH, 2016. Cadmium stress alters the redox reaction and hormone balance in oilseed rape (Brassica napus L.) leaves. Environ Sci Pollut Res 23: 3758-3769. https://doi.org/10.1007/s11356-015-5640-y

Zayneb C, Bassem K, Zeineb K, Grubb CD, Noureddine D, Hafedh M, Amine E, 2015. Physiological responses of fenugreek seedlings and plants treated with cadmium. Environ Sci Pollut Res 22: 10679-10689. https://doi.org/10.1007/s11356-015-4270-8

Zhou H, Zeng M, Zhou X, Liao BH, Liu J, Lei M, Zhong QY, Zeng H, 2013. Assessment of heavy metal contamination and bioaccumulation in soybean plants from mining and smelting areas of southern Hunan Province, China. Environ Toxicol Chem 32: 2719-2727. https://doi.org/10.1002/etc.2389

Zhu XF, Jiang T, Wang ZW, Lei GJ, Shi YZ, Li GX, Zheng SJ, 2012. Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mat 239-240: 302-307. https://doi.org/10.1016/j.jhazmat.2012.08.077

Published
2020-04-22
How to Cite
Francischini, G. S., Sala, H. R., Braga-Reis, I., Lima-Moro, A., & Bertoli, S. C. (2020). Commercial growth regulator has adverse effect over soybean seedlings under different cadmium levels. Spanish Journal of Agricultural Research, 18(1), e0301. https://doi.org/10.5424/sjar/2020181-15930
Section
Agricultural environment and ecology