Targeting the environmental assessment of veterinary drugs with the multi-species-soil system (MS·3) agricultural soil microcosms: the ivermectin case study

  • G. Carbonell-Martin
  • J. Pro-Gonzalez
  • P. Aragonese-Grunert
  • M. M. Babin-Vich
  • C. Fernandez-Torija
  • J.V. Tarazona-Lafarga
Keywords: effects, ivermectin, higher tier ecotoxicity test, soil microcosm, veterinary medicines

Abstract

The environmental risk assessment of the veterinary pharmaceutical ivermectin is receiving significant attention. This paper assesses the capacity of the MS·3 soil microcosm as a tool for targeting the environmental impact assessment
of veterinary drugs, using ivermectin as model. Two screening MS·3 were performed using different European soils; one with a soil collected in an agricultural station near to Madrid, Spain and a second with a soil collected in a farm area close to York, UK. Soils were fortified with ivermectin at the following ranges: 0.01-10 mg kg–1 and 0.1-100 mg kg–1 in the Madrid and York studies, respectively. The effects on earthworms, plants and soil microorganisms were assessed in the Madrid soil. Toxicity tests on aquatic organisms (algae, cladocerans and in vitro fish cell line RTLW1) were also conducted with the leachates. No effects were observed in earthworms and plants at any tested concentration; reduction in the respiration rate (< 5%) of soil microorganisms was detected. Earthworm/soil
bioconcentration factors decreased with the increase in soil concentrations and were higher for the York soil. Effects on daphnids were observed in tested leachates; based on measured levels of ivermectin in the leachates an EC50 of
about 0.5 μgL–1 can be estimated. Comparisons based on toxicity data and equilibrium partitioning confirmed that the
main risk is expected to be related to the high sensitivity of cladocerans. The results confirm that MS·3 systems are cost-effective tools for assessing the impact of veterinary pharmaceuticals when applied to agricultural land, as previously demonstrated for antimicrobials.

Downloads

Download data is not yet available.

Author Biographies

G. Carbonell-Martin
Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain
J. Pro-Gonzalez

 Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain

P. Aragonese-Grunert
Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain
M. M. Babin-Vich
Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain
C. Fernandez-Torija
Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain
J.V. Tarazona-Lafarga
Laboratory for Ecotoxicology. Department of the Environment. INIA. Ctra. A Coruña, km 7,5. 28040 Madrid. Spain

References

Alvinerie M., Sutra J.F., Galtier P., Lifschitz A., Virkel G., Sallovitz J., Lanusse C., 1998. Persistence of ivermectin on plasma and faeces following administration of a sustained-release bolus to cattle. Res Vet Sci 66, 57-61. http://dx.doi.org/10.1053/rvsc.1998.0240 PMid:10088713

Babín M.M., Tarazona J.V., 2005. In vitro toxicity of selected pesticides on RTG-2 and RTL-W1 fish cell lines. Environ Pollut 135, 267-274. http://dx.doi.org/10.1016/j.envpol.2004.11.001 PMid:15734586

Bloom R.A., Matheson III J.C., 1993. Environmental assessment of avermectins by the US Food and Drug Administration. Vet Parasitol 48, 281-294. http://dx.doi.org/10.1016/0304-4017(93)90163-H

Bockting G.M., Van De Plassche E.J., Strijs J., Canton J.H., 1993. Soil-water coefficients for organic compounds. RIVM. Bilthoven. RIVM /679110013.

Boleas S., Alonso C., Pro J., Fernández C., Carbonell G., Tarazona J.V., 2005a. Toxicity of the antimicrobial oxytetracycline to soil organisms in a multi-species-soil system (MS·3) and influence of manure co-addition. J Hazard Mater 122, 233-241. http://dx.doi.org/10.1016/j.jhazmat.2005.03.003 PMid:15967279

Boleas S., Alonso C., Pro J., Babín M.M., Fernández C., Carbonell G., Tarazona J.V., 2005b. Effects of sulfachlorpyridazine in MS·3-arable land: a multi-species soil system for assessing the environmental fate and effects of veterinary medicines. Environ Toxicol Chem 24, 811-819. http://dx.doi.org/10.1897/04-139R.1 PMid:15839554

Carbonell G., Pablos M.V., García P., Ramos C., Sánchez P., Fernández C., Tarazona J.V., 2000. Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. Sci Total Environ 247,143-150. http://dx.doi.org/10.1016/S0048-9697(99)00486-6

Davies I.M., Mchenery J.G., Rae G.H., 1997. Environmental risk assessment from dissolved ivermectin to marine organisms. Aquaculture 158, 263-275. http://dx.doi.org/10.1016/S0044-8486(97)00209-3

De Lange H.J., Lahr J., Van Der Pol J.J., Wessels Y., Faber J.H., 2009. Ecological vulnerability in wildlife: an expert judgment and multicriteria analysis tool using ecological traits to assess relative impact of pollutants. Environ Toxicol Chem 28, 2233-40. http://dx.doi.org/10.1897/08-626.1 PMid:19432506

ECB, 2003. Technical guidance document (TGD) on risk assessment in support of Commission Directive 93/67/EEC on risk assessment of new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances, Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Part II. Ispra (IT): European Commission Join Research Centre. EUR 20418 EN/2.

ECHA, 2008. Guidance on information requirements and chemical safety assessment. Chapter R.10: Characterization of dose (concentration)-response for environment, Helsinki. 65 pp.

Edwards C.L., Atiyeh R.M., Römbke J., 2001. Environmental impact of avermectins. Rev Environ Contam T 171,111-137. ISSN 0179-553. Springer-Verlag, Germany.

EMEA, 2004. EMEA/MRL/915/04-FINAL November 2004 Committee for medicinal products for veterinary use ivermectin (modification of maximum residue limits). Summary Report 5, London. 7 pp.

EMEA, 2008. Environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL6 and GL38.Doc.Ref. EMEA/CVMP/ VICH/790/03 /Final. London, Jan 2005.

Fernández C., Alonso C., Babin M.M., Pro J., Carbonell G., Tarazona J.V., 2004. Ecotoxicological assessment of doxycycline in aged pig manure using multispecies soil systems (MS·3). Sci Total Environ 323, 63-69. http://dx.doi.org/10.1016/j.scitotenv.2003.10.015 PMid:15081717

Fernández C., San Andrés M., Porcel M.A., Rodríguez C., Alonso A., Tarazona J.V., 2009. Pharmacokinetic profile of ivermectin in cattle dung excretion, and its associated environmental hazard. Soil Sediment Contam 18, 564-575. http://dx.doi.org/10.1080/15320380903085675

Floate K.D., Wardhaugh K.G., Boxall A.B.A., Sherratt T.N., 2005. Fecal residues of veterinary parasiticides: nontarget effects in the pasture environment. Annu Rev Entomol 50, 153-179. http://dx.doi.org/10.1146/annurev.ento.50.071803.130341 PMid:15471531

Garric J., Vollat B., Duis K., Péry A., Junker T., Ramil M., Fink G., Ternes T.A., 2007. Effects of the parasiticide ivermectin on the cladoceran Daphnia magna and the green alga Pseudokirchneriella subcapitata. Chemosphere 69, 903-910. http://dx.doi.org/10.1016/j.chemosphere.2007.05.070 PMid:17624408

Gunn A., Sadd J.W., 1994. The effect of ivermectin on the survival, behaviour and cocoon production of the earthworm Eisenia fetida. Pedobiologia 38, 327-3333.

Halley B.A., Jacob T.A., LU AY.H., 1989. The environmental impact of the use of ivermectin: environmental effects and fate. Chemosphere 18, 1543-1563. http://dx.doi.org/10.1016/0045-6535(89)90045-3

Jensen J., Krogh P.H., Sverdrup L.E., 2003. Effects of the antibacterial agents tiamulin, olanquindox, and metronidazole and the antihelminthic ivermectin on the soil invertebrate species Folsomia fimetaria (Collembolla) and Enchytraeus crypticus (Enchytraeidae). Chemosphere 50, 437-443. http://dx.doi.org/10.1016/S0045-6535(02)00336-3

Knox P., Uphill P.F., Fry J.R., Beuford J., Balls M., 1986. The FRAME multicentre project on in vitro cytotoxicology. Food Chem Tox 24, 457-463. http://dx.doi.org/10.1016/0278-6915(86)90092-X

Kolar L., Kuzner J., Erzen N.K., 2004. Determination of abamectin and doramectin in sheep faeces using HPLC with fluorescence detection. Biomed Chromatogr 18, 117-124. http://dx.doi.org/10.1002/bmc.306 PMid:15039964

Krogh K.A., Søeborg T., Brodin B., Sørensen B.H., 2008. Sorption and mobility of ivermectin in different soils. J Environ Qual 37, 2202-2211. http://dx.doi.org/10.2134/jeq2007.0592 PMid:18948473

Liebig M., Alonso A.A., Blübaum-Gronau E., Boxall A., Brinke M., Carbonell G., Egeler P., Fenner K., Fernández C., Fink G. et al., 2010. Environmental risk assessment of ivermectin: a case study. Integr Environ Assess Manag 6, 567-587. http://dx.doi.org/10.1002/ieam.96 PMid:20821718

Montforts H.M.M., Backwell P., Boxall A.B.A., Halling-Sorensen B., Hermnasen S., Ingerslev F., Jacobsen M., Kay P., Laak T., Moltmann J. et al., 2003. Environmental risk assessment for veterinary medicinal products. Part 5. A guide to risk assessment of veterinary medicinal products used in animal husbandry. RIVM Report 601450018/2003. Bilthoven. pp. 78.

Nessel R.J., Wallace D.H., Wehner T.A., 1989. Environmental fate of ivermectin in a cattle feedlot. Chemosphere 18, 1531-1541. http://dx.doi.org/10.1016/0045-6535(89)90044-1

OECD, 1984a. Earthworm acute toxicity test. Guideline for testing of chemicals 207. Organisation for Economic Co-Operation and Development, Paris, France.

OECD, 1984b. Terrestrial plants test. Guideline for testing of chemicals 208. Organisation for Economic Co-Operation and Development, Paris, France.

OECD, 2002. Freshwater algae and cyanobacteria, growth inhibition test. Guideline for the testing of chemicals, draft revised guideline 201. Organisation for Economic Co-Operation and Development, Paris, France

OECD, 2004. Daphnia sp., acute immobilisation test. Guideline for testing of chemicals 202. Organisation for Economic Co-Operation and Development, Paris, France.

Ramos C., De La Torre A., Tarazona J.V., Muñoz M.J., 1996. Desarrollo de un ensayo de inhibición de Chlorella vulgaris, utilizando un test en microplacas. Rev Toxicol 13, 97-100. [In Spanish].

Römbke J., Krogh K.A., Moser T., Scheffczyk A., LIEBIG M., 2010. Effects of the veterinary pharmaceutical ivermectin on soil invertebrates in laboratory tests. Arch Environ Contam Toxicol 58, 332-40. http://dx.doi.org/10.1007/s00244-009-9414-8 PMid:19882295

Sun Y.J., Diao X.P., Zhang Q.D., Shen J.Z., 2005. Bioaccumulation and elimination of avermectin B-1a in the earthworms (Eisenia fetida). Chemosphere 60, 699-704. http://dx.doi.org/10.1016/j.chemosphere.2005.01.044 PMid:15963808

Tarazona J.V., Escher B., Giltrow E., Sumpter J.P., Knacker T., 2010. Targeting the environmental risk assessment of pharmaceuticals: facts and fantasies. Integr Environ Assess Manag 6, 603-613. PMid:19886731

Van Den Brink P.J., Tarazona J.V., Solomon K.R., Knacker T., Van Den Brink N.W., Brock T.C.M., Hoogland J., 2005. The use of terrestrial and aquatic microcosm and mesocosms for the ecological risk assessment of veterinary pharmaceuticals. Environ Toxicol Chem 24, 820-829. http://dx.doi.org/10.1897/04-268R.1 PMid:15839555

VICH, 2000. International cooperation on harmonisation of technical requirements for registration of veterinary medicinal products. Environmental impact assessment (EIAs) for veterinary medicinal products (VMPs) – Phase I. VICH GL 6 (Ecotoxicity Phase I)

VICH, 2004. International cooperation on harmonisation of technical requirements for registration of veterinary medicinal products. environmental impact assessment for veterinary medicinal products Phase II Guidance. VICH GL 38 (Ecotoxicity Phase II).

Worth A.P., Balls M. (eds), 2002. Alternative (nonanimal) methods for chemicals testing: current status and future prospects. A report prepared by ECVAM and the ECVAM Working Group on Chemicals. ATLA 30(Suppl. 1), 1-125.

Published
2011-05-19
How to Cite
Carbonell-Martin, G., Pro-Gonzalez, J., Aragonese-Grunert, P., Babin-Vich, M. M., Fernandez-Torija, C., & Tarazona-Lafarga, J. (2011). Targeting the environmental assessment of veterinary drugs with the multi-species-soil system (MS·3) agricultural soil microcosms: the ivermectin case study. Spanish Journal of Agricultural Research, 9(2), 433-443. https://doi.org/10.5424/sjar/20110902-389-10
Section
Agricultural environment and ecology