Evaluating models for the estimation of furrow irrigation infiltration and roughness

  • H. Ramezani Etedali Department of Irrigation and Reclamation Engineering, University College of Agricultural and Natural Resources. University of Tehran. P.O. Box 4111. 31587-77871 Karaj. Iran
  • H. Ebrahimian Department of Irrigation and Reclamation Engineering, University College of Agricultural and Natural Resources. University of Tehran. P.O. Box 4111. 31587-77871 Karaj. Iran
  • F. Abbasi Agricultural Engineering Research Institute (AERI). Karaj. Iran
  • A. Liaghat Department of Irrigation and Reclamation Engineering, University College of Agricultural and Natural Resources. University of Tehran. P.O. Box 4111. 31587-77871 Karaj. Iran
Keywords: EVALUE, furrow irrigation, INFILT, infiltration parameters, Manning roughness coefficient, SIPAR_ID

Abstract

Several methods have been proposed for estimating infiltration and roughness parameters in surface irrigation using mathematical models. The EVALUE, SIPAR_ID, and INFILT models were used in this work. The EVALUE model
uses a direct solution procedure, whereas the other two models are based on the inverse solution approach. The objective of this study is to evaluate the capacity of these models to estimate the Kostiakov infiltration parameters and the Manning roughness coefficient in furrow irrigation. Twelve data sets corresponding to blocked-end and free draining
furrows were used in this work. Using the estimated  parameters and the SIRMOD irrigation simulation software, the total infiltrated volume and recession time were predicted to evaluate the accuracy of the mathematical models. The
EVALUE and SIPAR_ID models provided the best performance, with EVALUE performing better than SIPAR_ID for estimating the Manning roughness coefficient. The INFILT model provided lower accuracy in cut-back irrigation than in standard irrigation. The performance of SIPAR_ID and INFILT in blocked-end and free draining furrows was similar.

Downloads

Download data is not yet available.

References

Abbasi F., Simunek J., Van Genuchten M.T., Reyen J., Adamsen F.J., Hunsaker D.J., Strelkoff T.S., Shouse P., 2003. Overland water flow and solute transport: model development and field-data analysis. J Irrig Drain Eng 129(2), 71-81. http://dx.doi.org/10.1061/(ASCE)0733-9437(2003)129:2(71)

Abbasi F., Jolaini M., Rezaee M., 2009a. Evaluation of fertigation in different regimes of furrow irrigation systems. Final Research Report. Agricultural Engineering Research Institute, Karaj. [In Persian].

Abbasi F., Liaghat A.M., Ganjeh A., 2009b. Evaluation of fertigation uniformity in furrow irrigation. Agric Sci 39(1), 117-127. [In Persian].

Austin N.R., Prendergast J.B., 1997. Use of kinematic wave theory to model irrigation on a cracking soil. Irrig Sci 18, 1-10. http://dx.doi.org/10.1007/s002710050038

Bautista E., Clemmens A.J., Strelkoff T.S., 2009. Structured application of the two-point method for the estimation of infiltration parameters in surface irrigation. J Irrig Drain Eng 135(5), 566-578. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000054

Ebrahimian H., Liaghat A., Ghanbarian-Alavijeh B., Abbasi F., 2010. Evaluation of various quick methods for estimating furrow and border infiltration parameters. Irrig Sci 28(6), 479-488. http://dx.doi.org/10.1007/s00271-010-0209-5

Elliott R.L., Walker W.R., 1982. Field evaluation of furrow infiltration and advance functions. T ASAE 25, 396-400.

Harun-Ur-Rashid M., 1990. Estimation of Manning's roughness coefficient for basin and border irrigation. Agric Water Manage 18, 29-33. http://dx.doi.org/10.1016/0378-3774(90)90033-U

Homaee M., Dirksen C., Feddes R.A., 2002. Simulation of root water uptake. I. No uniform transient salinity stress using different macroscopic reduction functions. Agric Water Manage 57(2), 89-109. http://dx.doi.org/10.1016/S0378-3774(02)00072-0

Khatri K.L., Smith R.J., 2005. Evaluation of methods for determining infiltration parameters from irrigation advance data. Irrig Drain 54, 467-482. http://dx.doi.org/10.1002/ird.198

Mailapalli D.R., Raghuwanshi N.S., Singh R., Schmitz G.H., Lennartz F., 2008. Spatial and temporal variation of Manning's roughness coeff icient in furrow irrigation. J Irrig Drain Eng 134(2), 185-192. http://dx.doi.org/10.1061/(ASCE)0733-9437(2008)134:2(185)

Mailhol J.C., Baqri M., Lachhap M., 1997. Operative irrigation modelling for real-time applications on closed-end furrows. Irrig Drain Sys 11, 347-366. http://dx.doi.org/10.1023/A:1005868002235

Mcclymont D.J., SMITH R.J., 1996. Infiltration parameters from optimisation on furrow irrigation advance data. Irrig Sci 17(1),15-22. http://dx.doi.org/10.1007/s002710050017

Ramezani Etedali H., Liaghat A., Abbasi F., 2009. Evaluation of EVALUE model for estimating Manning's roughness in furrow irrigation. Agr Eng Res 10(3), 83-94. [In Persian].

Rasoulzadeh A., Sepaskhah A.R., 2003. Scaled infiltration equations for furrow irrigation. Biosyst Eng 86(3), 375-383. http://dx.doi.org/10.1016/j.biosystemseng.2003.07.004

Rodríguez J.A., 2003. Estimation of advance and infiltration equations in furrow irrigation for untested discharges. Agric Water Manage 60, 227-239. http://dx.doi.org/10.1016/S0378-3774(02)00163-4

Rodríguez J.A., Martos J.C., 2010. SIPAR_ID: freeware for surface irrigation parameter identification. Environ Modell Softw 25(11), 1487-1488. http://dx.doi.org/10.1016/j.envsoft.2008.09.001

Sepaskhah A.R., Bondar H., 2002. Estimation of Manning roughness coefficient for bare and vegetated furrow irrigation. Biosyst Eng 82(3), 351-357. http://dx.doi.org/10.1006/bioe.2002.0076

Shepard J.S., Wallender W.W., Hopmans J.W., 1993. One method for estimating furrow infiltration. T ASAE 36(2), 395-404.

Strelkoff T.S., Clemmens A.J., El-Ansary M., Awad M., 1999. Surface irrigation evaluation models: application to level basin in Egypt. T ASAE 42(4), 1027- 1036.

Strelkoff T.S., Clemmens A.J., Bautista E., 2009. Estimation of soil and crop hydraulic properties. J Irrig Drain Eng 135(5), 537-555. http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000088

Trout T.J., 1992. Furrow flow velocity effect on hydraulic roughness. J Irrig Drain Eng 118(6), 981-987. http://dx.doi.org/10.1061/(ASCE)0733-9437(1992)118:6(981)

Upadhyaya S.K., Raghuwanshi N.S., 1999. Semiempirical infiltration equations for furrow irrigation systems. Irrig Drain 125(4), 173-178. http://dx.doi.org/10.1061/(ASCE)0733-9437(1999)125:4(173)

Valiantzas J.D., 1994. Simple method for identification of border infiltration and roughness characteristics. J Irrig Drain Eng 120, 233-249. http://dx.doi.org/10.1061/(ASCE)0733-9437(1994)120:2(233)

Valiantzas J.D., Aggelides S., Sassalou A., 2001. Furrow infiltration estimation from time to a single advance point. Agric Water Manage 52, 17-32. http://dx.doi.org/10.1016/S0378-3774(01)00128-7

Vatankhah A.R., Ebrahimian H., Bijankhan M., 2010. Discussion of «quick method for estimating furrow infiltration» (Mailapalli D.R., Wallender W.W., Raghuwanshi N.S., Singh R., eds). J Irrig Drain Eng 136(1), 73-75.

Walker W.R., 2003. Sirmod III- Surface irrigation simulation, evaluation and design. Guide and technical documentation. Dept of Biological and Irrigation Engineering, Utah St Univ, Logan, UT, USA.

Walker W.R., 2005. Multilevel calibration of furrow inf iltration and roughness. J Irrig Drain Eng 131(2), 129-136. http://dx.doi.org/10.1061/(ASCE)0733-9437(2005)131:2(129)

How to Cite
Ramezani Etedali, H., Ebrahimian, H., Abbasi, F., & Liaghat, A. (1). Evaluating models for the estimation of furrow irrigation infiltration and roughness. Spanish Journal of Agricultural Research, 9(2), 641-649. https://doi.org/10.5424/sjar/20110902-342-10
Section
Water management