Review. Dairy farm management and production practices associated with the presence of Listeria monocytogenes in raw milk and beef

  • P. Santorum Centro de Investigacion y Formacion Agrarias (CIFA), Consejeria de Desarrollo Rural, Ganaderia, Pesca y Biodiversidad de Cantabria, C/ Heroes 2 Mayo, 27, 39600 Muriedas, Cantabria
  • R. García Centro de Investigacion y Formacion Agrarias (CIFA), Consejeria de Desarrollo Rural, Ganaderia, Pesca y Biodiversidad de Cantabria, C/ Heroes 2 Mayo, 27, 39600 Muriedas, Cantabria
  • V. López Departmento de Bioinformatica y Salud Publica, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid
  • J. V. Martínez-Suárez Departmento de Tecnologia de Alimentos, Instituto Nacional de Investigacion y Tecnologia Agraria y Alimentaria (INIA), Carretera de La Coruna km 7.5, 28040 Madrid
Keywords: animal reservoir, dairy primary production, environmental sources, food vehicles, listeriosis

Abstract

Human listeriosis is a severe foodborne disease caused by Listeria monocytogenes. It is a zoonosis that represents a significant concern for the food industry due to the high mortality rate it causes and the fact that the organism is capable of growing at refrigeration temperatures. Dairy products and ready-to-eat meats are among the foods most often involved in listeriosis outbreaks. Listeria is a common contaminant in the dairy environment, both on the farm and in the processing plant. The main sources of L. monocytogenes in dairy farms are manure and improperly fermented silage. If silage crops are grown on contaminated land, a new cycle of silage contamination and faecal shedding by ruminants that consume such silage may ensue. High loads of L. monocytogenes produced in farm environments may thus represent a primary source for the introduction of this pathogen into the human food supply chain; dairy cows would represent a reservoir for the bacterium, and raw milk and beef would represent the main vehicles for its transmission from dairy farms to humans. Even if contamination originates in post-processing environments, contaminated raw foods may still represent a vehicle for introducing L. monocytogenes into food processing plants.Molecular typing methods have confirmed that common strains of L. monocytogenes are present in dairy farm-associated isolates and isolates from both human epidemic and sporadic cases. Pre-harvest (on-farm) control of listeriosis should be basedmainlyon the control of manure, silage, herd health and milking practices.

Downloads

Download data is not yet available.

References

Adam K, Brülisauer F, 2010. The application of food safety interventions in primary production of beef and lamb: a review. Int J Food Microbiol 141(Suppl 1): S43-52. http://dx.doi.org/10.1016/j.ijfoodmicro.2009.12.020 PMid:20097438

Allerberger F, Wagner M, 2010. Listeriosis: a resurgent foodborne infection. Clin Microbiol Infect 16: 16-23. http://dx.doi.org/10.1111/j.1469-0691.2009.03109.x PMid:20002687

Antognoli MC, Lombard JE, Wagner BA, McCluskey BJ, Van Kessel JS, Karns JS, 2009. Risk factors associated with the presence of viable Listeria monocytogenes in bulk tank milk from US dairies. Zoonoses Public Health 56: 77-83. http://dx.doi.org/10.1111/j.1863-2378.2008.01161.x PMid:18705657

Arimi SM, Ryser ET, Pritchard TJ, Donelly CW, 1997. Diversity of Listeria ribotypes recovered from dairy cattle, silage and dairy processing environment. J Food Prot 60: 811-816.

Borucki MK, Reynolds J, Gay CC, Mcelwain KL, Kim SH, Knowles DP, Hu J, 2004. Dairy farm reservoir of Listeria monocytogenes sporadic and epidemic strains. J Food Prot 67: 2496-2499. PMid:15553633

Brosch R, Brett M, Catimel B, Luchansky JB, Ojeniyi B, Rocourt J, 1996. Genomic fingerprinting of 80 strains from the WHO multicenter international typing study of Listeria monocytogenes via pulsed-field gel electrophoresis (PFGE). Int J Food Microbiol 32: 343–355. http://dx.doi.org/10.1016/S0168-1605(96)01147-6

Buckley M, Reid A, 2010. Global food safety: keeping food safe from farm to table. A Report from the American Academy of Microbiology. Available on line in http://academy.asm.org/images/stories/documents/Global_Food_Safety.pdf. pp. 1-41. [1 June 2011].

Bundrant BN, Hutchins T, Den Bakker HC, Fortes E, Wiedmann M, 2011. Listeriosis outbreak in dairy cattle caused by an unusual Listeria monocytogenes serotype 4b strain. J Vet Diagn Invest 23: 155-158. http://dx.doi.org/10.1177/104063871102300130 PMid:21217050

CDC, 2011. Vital signs: incidence and trends of infection with pathogens transmitted commonly through food--foodborne diseases active surveillance network, 10 U.S. sites, 1996-2010. Centers for Disease Control and Prevention. MMWR Morb Mortal Wkly Rep 60: 749-755. PMid:21659984

Chan MS, Maiden MC, Spratt BG, 2001. Database-driven multi locus sequence typing (MLST) of bacterial pathogens. Bioinformatics 17: 1077-1083. http://dx.doi.org/10.1093/bioinformatics/17.11.1077 PMid:11724739

Dijkstra RG, 1971. Investigations on the survival times of Listeria bacteria in suspensions of brain tissue, silage and faeces and in milk. Zentralbl Bacteriol 216: 92–95.

Duffy G, 2009. Pathogen control in primary production: meat, dairy and eggs. In: Foodborne pathogens: hazards, risk analysis and control, 2nd ed (Blackburn C de W, McClure PJ, eds). Woodhead Publ, Cambridge. pp: 182-204. http://dx.doi.org/10.1533/9781845696337.1.182

EFSA, 2007. Scientific opinion of the panel on biological hazards on a request from the European Commission on request for updating the former SCVPH opinion on Listeria monocytogenes risk related to ready-to-eat foods and scientific advice on different levels of Listeria monocytogenes in ready-to-eat foods and the related risk for human illness. European Food Safety Authority. EFSA J 599: 1-42.

EFSA, 2009a. Scientific opinion of the panel on biological hazards on a request from the European Commission on food safety aspects of dairy cow housing and husbandry systems. EFSA J 1189: 1-27.

EFSA, 2009b. Scientific report of EFSA prepared by the animal health and animal welfare unit on the effects of farming systems on dairy cow welfare and disease. Annex to the EFSA J 1143: 1-38.

EFSA, 2011. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2009; European Food Safety Authority/European Centre for Disease Prevention and Control. EFSA J 9: pdf no. 2090. [378 pp.].

Erdogan HM, Morgan KL, Green LE, 2001. Prevalence, incidence, signs and treatment of clinical listeriosis in dairy cattle in England. Vet Rec 149: 289–293. http://dx.doi.org/10.1136/vr.149.10.289 PMid:11570788

Esteban JI, Oporto B, Aduriz G, Juste RA, Hurtado A, 2009. Faecal shedding and strain diversity of Listeria monocytogenes in healthy ruminants and swine in Northern Spain. BMC Vet Res 5: 2. http://dx.doi.org/10.1186/1746-6148-5-2 PMid:19133125    PMCid:2651128

EUCAST, 2011. Data from the European Committee on Antimicrobial Susceptibility Testing MIC distribution website. Available on line in http://217.70.33.99/Eucast2/SearchController/regShowAll.jsp?Title=Listeria monocytogenes. [7 March 2011].

Farber JM, Peterkin PI, 1991. Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55: 476–511. PMid:1943998    PMCid:372831

Fenlon DR, Wilson J, Donachie W, 1996. The incidence and level of Listeria monocytogenes contamination of food sources at primary production and initial processing. J Appl Bacteriol 81: 641–650. PMid:8972091

Fox E, O’Mahony T, Clancy M, Dempsey R, O’Brien M, Jordan K, 2009. Listeria monocytogenes in the Irish dairy farm environment. J Food Prot 72: 1450-1456. PMid:19681268

Fox EM, Leonard N, Jordan K, 2011. Molecular diversity of Listeria monocytogenes isolated from Irish dairy farms. Foodborne Pathog Dis 8: 635-641. http://dx.doi.org/10.1089/fpd.2010.0806 PMid:21247298

Fretz R, Pichler J, Sagel U, Much P, Ruppitsch W, Pietzka AT, Stöger A, Huhulescu S, Heuberger S, Appl G et al., 2010. Update: Multinational listeriosis outbreak due to 'Quargel', a sour milk curd cheese, caused by two different L. monocytogenes serotype 1/2a strains, 2009-2010. Euro Surveill 15(16): pii: 19543.

Fugett EB, Schoonmaker-Bopp D, Dumas NB, Corby J, Wiedmann M, 2007. Pulsed-field gel electrophoresis (PFGE) analysis of temporally matched Listeria monocytogenes isolates from human clinical cases, foods, ruminant farms, and urban and natural environments reveals source-associated as well as widely distributed PFGE types. J Clin Microbiol 45: 865–873. http://dx.doi.org/10.1128/JCM.01285-06 PMid:17202278    PMCid:1829084

Gerner-Smidt P, Hise K, Kincaid J, Hunter S, Rolando S, Hyytiä-Trees E, Ribot EM, Swaminathan B, 2006. Pulsenet taskforce. PulseNet USA: a five-year update. Foodborne Pathog Dis 3: 9-19. http://dx.doi.org/10.1089/fpd.2006.3.9 PMid:16602975

Granier SA, Moubareck C, Colaneri C, Lemire A, Roussel S, Dao TT, Courvalin P, Brisabois A, 2011. Antimicrobial resistance of Listeria monocytogenes isolates from food and the environment in France over a 10-year period. Appl Environ Microbiol 77: 2788-2790. http://dx.doi.org/10.1128/AEM.01381-10 PMid:21357436    PMCid:3126347

Graves LM, Swaminathan B, 2001. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol 65: 55–62. http://dx.doi.org/10.1016/S0168-1605(00)00501-8

Guerini MN, Brichta-Harhay DM, Shackelford TS, Arthur TM, Bosilevac JM, Kalchayanand N, Wheeler TL, Koohmaraie M, 2007. Listeria prevalence and Listeria monocytogenes serovar diversity at cull cow and bull processing plants in the United States. J Food Prot 70: 2578-2582. PMid:18044437

Hassan L, Mohammed HO, McDonough PL, 2001. Farm-management and milking practices associated with the presence of Listeria monocytogenes in New York state dairy herds. Prev Vet Med 51: 63-73. http://dx.doi.org/10.1016/S0167-5877(01)00207-0

Hathaway SC, 1997. Intensive (pasture) beef cattle operations: the perspective of New Zealand. Rev Sci Tech 16: 382-390. PMid:9501351

Ho AJ, Ivanek R, Gröhn YT, Nightingale KK, Wiedmann M, 2007a. Listeria monocytogenes fecal shedding in dairy cattle shows high levels of day-to-day variation and includes outbreaks and sporadic cases of shedding of specific L. monocytogenes subtypes. Prev Vet Med 80: 287-305. http://dx.doi.org/10.1016/j.prevetmed.2007.03.005 PMid:17481754

Ho AJ, Lappi VR, Wiedmann M, 2007b. Longitudinal monitoring of Listeria monocytogenes contamination patterns in a farmstead dairy processing facility. J Dairy Sci 90: 2517-2524. http://dx.doi.org/10.3168/jds.2006-392 PMid:17430956

Honjoh K, Fujihara K, Haraguchi T, Ono Y, Kobayashi H, Hiwaki H, Kamikado H, Jang SS, Ryu S, Miyamoto T, 2008. Subtyping of Listeria monocytogenes based on nucleotide polymorphism in the clpC, inlA, hlyA, and plcA genes and rapid identification of L. monocytogenes genetically similar to clinical isolates. Food Sci Technol Res 14: 557. http://dx.doi.org/10.3136/fstr.14.557

Husu JR, 1990. Epidemiological studies on the occurrence of Listeria monocytogenes in the feces of dairy cattle. J Vet Med B 37: 276-282. http://dx.doi.org/10.1111/j.1439-0450.1990.tb01059.x

Husu JR, Seppänen JT, Sivelä SK, Rauramaa AL, 1990. Contamination of raw milk by Listeria monocytogenes on dairy farms. Zentralbl Veterinarmed B 37: 268-275. PMid:2116711

Hutchison ML, Walters LD, Avery SM, Munro F, Moore A, 2005a. Analyses of livestock production, waste storage, and pathogen levels and prevalences in farm manures. Appl Environ Microbiol 71: 1231-1236. http://dx.doi.org/10.1128/AEM.71.3.1231-1236.2005 PMid:15746323    PMCid:1065162

Hutchison ML, Walters LD, Moore T, Thomas DJI, Avery SM, 2005b. Fate of pathogens present in livestock wastes spread onto fescue plots. Appl Environ Microbiol 71: 691-696. http://dx.doi.org/10.1128/AEM.71.2.691-696.2005 PMid:15691918    PMCid:546755

ILSI Res Foundation-Risk Sci Inst, 2005. Achieving continuous improvement in reductions in foodborne listeriosis. A risk-based approach. J Food Prot 68: 1932-1994. PMid:16161698

Ivanek R, Gröhn YT, Wiedmann M, 2006. Listeria monocytogenes in multiple habitats and host populations: review of available data for mathematical modeling. Foodborne Pathog Dis 3: 319-336. http://dx.doi.org/10.1089/fpd.2006.3.319 PMid:17199514

Jeffers GT, Bruce JL, Mcdonough PL, Scarlett J, Boor KJ, Wiedmann M, 2001. Comparative genetic characterization of Listeria monocytogenes isolates from human and animal listeriosis cases. Microbiology 147: 1095-1104. PMid:11320113

Jiang XP, Islam M, Morgan J, Doyle MP, 2004. Fate of Listeria monocytogenes in bovine-manure amended soil. J Food Prot 67: 1676-1681. PMid:15330533

Johnsen BO, Lingaas E, Torfoss D, Strøm EH, Nordøy I, 2010. A large outbreak of Listeria monocytogenes infection with short incubation period in a tertiary care hospital. J Infect 61: 465-470. http://dx.doi.org/10.1016/j.jinf.2010.08.007 PMid:20813130

Kathariou S, 2002. Listeria monocytogenes virulence and pathogenicity, a food safety perspective. J Food Prot 65: 1811-1829. PMid:12430709

Kim J, Jiang X, 2010. The growth potential of Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in dairy manure-based compost in a greenhouse setting under different seasons. J Appl Microbiol 109: 2095-2104. http://dx.doi.org/10.1111/j.1365-2672.2010.04841.x PMid:20846332

Klein M, Brown L, Tucker RW, Ashbolt NJ, Stuetz RM, Roser DJ, 2010. Diversity and abundance of zoonotic pathogens and indicators in manures of feedlot cattle in Australia. Appl Environ Microbiol 76: 6947-6950. http://dx.doi.org/10.1128/AEM.01095-10 PMid:20802080    PMCid:2953019

Koch J, Dworak R, Prager R, Becker B, Brockmann S, Wicke A, Wichmann-Schauer H, Hof H, Werber D, Stark K, 2010. Large listeriosis outbreak linked to cheese made from pasteurized milk, Germany, 2006-2007. Foodborne Pathog Dis 7: 1581-1584. http://dx.doi.org/10.1089/fpd.2010.0631 PMid:20807110

Korthals M, Ege M, Lick S, Von Mutius E, Bauer J, 2008. Occurrence of Listeria spp. in mattress dust of farm children in Bavaria. Environ Res 107: 299-304. http://dx.doi.org/10.1016/j.envres.2008.02.007 PMid:18377890

Lahuerta A, Westrell T, Takkinen J, Boelaert F, Rizzi V, Helwigh B, Borck B, Korsgaard H, Ammon A, Mäkela P, 2011. Zoonoses in the European Union: origin, distribution and dynamics - the EFSA-ECDC summary report 2009. Euro Surveill 16: pii 19832.

Latorre AA, Van Kessel JA, Karns JS, Zurakowski MJ, Pradhan AK, Boor KJ, Adolph E, Sukhnanand S, Schukken YH, 2011. Increased in vitro adherence and on-farm persistence of predominant and persistent Listeria monocytogenes strains in the milking system. Appl Environ Microbiol 77: 3676-3684. http://dx.doi.org/10.1128/AEM.02441-10 PMid:21441322    PMCid:3127605

Lopez V, Suarez M, Chico-Calero I, Navas J, Martinez-Suarez JV, 2006. Foodborne Listeria monocytogenes: are all the isolates equally virulent? Rev Argent Microbiol 38: 224-234. PMid:17370579

Lungu B, O'bryan CA, Muthaiyan A, Milillo SR, Johnson MG, Crandall PG, Ricke SC, 2011. Listeria monocytogenes: Antibiotic resistance in food production. Foodborne Pathog Dis 8: 569-578. http://dx.doi.org/10.1089/fpd.2010.0718 PMid:21166580

Lyautey E, Lapen DR, Wilkes G, McCleary K, Pagotto F, Tyler K, Hartmann A, Piveteau P, Rieu A, Robertson WJ et al., 2007. Distribution and characteristics of Listeria monocytogenes isolates from surface waters of the South Nation River watershed, Ontario, Canada. Appl Environ Microbiol 73: 5401-5410. http://dx.doi.org/10.1128/AEM.00354-07 PMid:17630309    PMCid:2042075

McLauchlin J, 1990. Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur J Clin Microbiol Infect Dis 9: 210-213. http://dx.doi.org/10.1007/BF01963840 PMid:6756909

Mohammed HO, Stipetic K, Mcdonough PL, Gonzalez RN, Nydam DV, Atwill ER, 2009. Identification of potential on-farm sources of Listeria monocytogenes in herds of dairy cattle. Am J Vet Res 70: 383-388. http://dx.doi.org/10.2460/ajvr.70.3.383 PMid:19254151

Molla B, Sterman A, Mathews J, Artuso-Ponte V, Abley M, Farmer W, Rajala-Schultz P, Morgan Morrow WE, Gebreyes WA, 2010. Salmonella enterica in commercial swine feed and subsequent isolation of phenotypically and genotypically related strains from fecal samples. Appl Environ Microbiol 76: 7188-7193. http://dx.doi.org/10.1128/AEM.01169-10 PMid:20851969    PMCid:2976273

Morvan A, Moubareck C, Leclercq A, Hervé-Bazin M, Bremont S, Lecuit M, Courvalin P, Le Monnier A, 2010. Antimicrobial resistance of Listeria monocytogenes strains isolated from humans in France. Antimicrob Agents Chemother 54: 2728-2731. http://dx.doi.org/10.1128/AAC.01557-09 PMid:20385859    PMCid:2876386

Nicholson FA, Groves SJ, Chambers BJ, 2005. Pathogen survival during livestock manure storage and following land application. Bioresour Technol 96: 135-143. http://dx.doi.org/10.1016/j.biortech.2004.02.030 PMid:15381209

Nightingale K, 2010. Listeria monocytogenes: knowledge gained through DNA sequence-based subtyping, implications, and future considerations. J AOAC Int 93: 1275-1286. PMid:20922962

Nightingale KK, Fortes ED, Ho AJ, Schukken YH, Grohn YT, Wiedmann M, 2005. Evaluation of farm management practices as risk factors for clinical listeriosis and fecal shedding of Listeria monocytogenes in ruminants. J Am Vet Med Assoc 227: 1808-1814. http://dx.doi.org/10.2460/javma.2005.227.1808 PMid:16350271

Nightingale KK, Schukken YH, Nightingale CR, Fortes ED, Ho AJ, Her Z, Gröhn YT, McDonough PL, Wiedmann M, 2004. Ecology and transmission of Listeria monocytogenes infecting ruminants and in the farm environment. Appl Environ Microbiol 70: 4458–4467. Ortiz S, Lopez V, Villatoro D, Lopez P, Davila JC, Martinez-Suarez JV, 2010. A 3-year surveillance of the genetic diversity and persistence of Listeria monocytogenes in an Iberian pig slaughterhouse and processing plant. Foodborne Pathogens Dis 7: 1177-1184.

Pauly TM, Tham WA, 2003. Survival of Listeria monocytogenes in wilted and additive-treated grass silage. Acta Vet Scand 44: 73-86. http://dx.doi.org/10.1186/1751-0147-44-73 PMid:14650546    PMCid:1831553

Pradhan AK, Van Kessel JS, Karns JS, Wolfgang DR, Hovingh E, Nelen KA, Smith JM, Whitlock RH, Fyock T, Ladely S, Fedorka-Cray PJ, Schukken YH, 2009. Dynamics of endemic infectious diseases of animal and human importance on three dairy herds in the northeastern United States. J Dairy Sci 92: 1811-1825. http://dx.doi.org/10.3168/jds.2008-1486 PMid:19307664

Revazishvili T, Kotetishvili M, Stine OC, Kreger AS, Morris JG Jr, Sulakvelidze A, 2004. Comparative analysis of multilocus sequence typing and pulsed-field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources. J Clin Microbiol 42: 276-285. http://dx.doi.org/10.1128/JCM.42.1.276-285.2004 PMid:14715765    PMCid:321703

Rhoades JR, Duffy G, Koutsoumanis K, 2009. Prevalence and concentration of verocytotoxigenic Escherichia coli, Salmonella enterica and Listeria monocytogenes in the beef production chain: a review. Food Microbiol 26: 357-376. http://dx.doi.org/10.1016/j.fm.2008.10.012 PMid:19376457

Rivera-Betancourt M, Shackelford SD, Arthur TM, Westmoreland KE, Bellinger G, Rossman M, Reagan JO, Koohmaraie M, 2004. Prevalence of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella in two geographically distant commercial beef processing plants in the United States. J Food Prot 67: 295-302. PMid:14968961

Ryser ET, 2007. Incidence and behaviour of Listeria monocytogenes in unfermented dairy products. In: Listeria, listeriosis and food safety (Ryser ET, Marth EH, eds). CRC Press, Boca Raton, FL, USA. pp: 357–403. http://dx.doi.org/10.1201/9781420015188.ch11

Sanaa M, Poutrel B, Menard JL, Serieys F, 1993. Risk factors associated with contamination of raw milk by Listeria monocytogenes in dairy farms. J Dairy Sci 76: 2891–2898. http://dx.doi.org/10.3168/jds.S0022-0302(93)77628-6

Santorum P, Garcia R, Fernandez B, 2007. Seasonal changes of zoonotic agents presence in dairy manure of modern and traditional farms. Proc. XIII International Congress in Animal Hygiene. Tartu, Estonia, June 17-21. pp: 915-920.

Sauders BD, Wiedmann M, 2007. Ecology of Listeria species and L. monocytogenes in the natural environment. In: Listeria, listeriosis and food safety (Ryser ET, Marth EH, eds). CRC Press, Boca Raton, FL, USA. pp: 21-53.

Swaminathan B, Cabanes D, Zhang W, Cossart P, 2007. Listeria monocytogenes. In: Food microbiology. Fundamentals and frontiers (Doyle MP, Beuchat LR, eds). ASM Press, Washington, DC. pp: 457-491.

Swaminathan B, Gerner-Smidt P, 2007. The epidemiology of human listeriosis. Microbes Infect 9: 1236-1243. Troutt HF, Osburn BI, 1997. Meat from dairy cows: possible microbiological hazards and risks. Rev Sci Tech 16: 405-414.

Van Kessel JS, Santin-Duran M, Karns JS, 2011. Tracing zoonotic pathogens in dairy production. In: Tracing pathogens in the food chain (Brul S, Fratamico PM, McMeekin TA, eds). Woodhead Publ, Cambridge. pp: 503-526. http://dx.doi.org/10.1533/9780857090508.4.503

Vazquez-Villanueva J, Orgaz B, Ortiz S, Lopez V, Martinez-Suarez JV, Sanjose C, 2010. Predominance and persistence of a single clone of Listeria ivanovii in a Manchego cheese factory over 6 months. Zoonoses Public Health 57: 402-410. http://dx.doi.org/10.1111/j.1863-2378.2009.01232.x PMid:19486491

Vilar MJ, Yus E, Sanjuan ML, Diéguez FJ, Rodriguez-Otero JL, 2007. Prevalence of and risk factors for Listeria species on dairy farms. J Dairy Sci 90: 5083-5088. http://dx.doi.org/10.3168/jds.2007-0213 PMid:17954748

Wesley I, 2007. Listeriosis in animals. In: Listeria, listeriosis and food safety (Ryser ET, Marth EH, eds). CRC Press, Boca Raton, FL, USA. pp: 55-84. http://dx.doi.org/10.1201/9781420015188.ch3

Winter P, Schilcher F, Bago Z, Schoder D, Egerbacher M, Baumgartner W, Wagner M, 2004. Clinical and histopathological aspects of naturally occurring mastitis caused by Listeria monocytogenes in cattle and ewes. J Vet Med B Infect Dis Vet Public Health 51: 176-179. http://dx.doi.org/10.1111/j.1439-0450.2004.00751.x PMid:15228552

Published
2012-04-25
How to Cite
Santorum, P., García, R., López, V., & Martínez-Suárez, J. V. (2012). Review. Dairy farm management and production practices associated with the presence of Listeria monocytogenes in raw milk and beef. Spanish Journal of Agricultural Research, 10(2), 360-371. https://doi.org/10.5424/sjar/2012102-314-11
Section
Animal health and welfare