A machine vision system for classification of wheat and barley grain kernels

F. Guevara-Hernandez, J. Gomez-Gil


This study presents in detail a machine vision system that classifies objects into two classes. The procedure for the classification comprises two stages: a training stage and a testing stage. A feature vector, which is a sorted list of features that maximize the classification power, is computed in the training stage. Object classification was accomplished in the testing stage by means of discriminant analysis (DA) and K-nearest neighbors (K-NN) algorithms. The system was applied to the classification of wheat and barley grain kernels. Results obtained allow the researchers to conclude that in the classification of wheat and grain kernels with the presented system: (i) a high classification accuracy can be obtained; (ii) the employment of morphologic, color, and texture feature types together offers better accuracy than the employment of only one feature type; (iii) the extraction of the maximum radius, the green mean, and the y mean of the gray level co-occurrence matrix (GLCM) for 90° allows the highest classification accuracy; and (iv) the employment of more than three features increases the computational cost and may also reduce the classification accuracy. 


cereal grains classification; color; digital image processing; features; morphology; texture; seed identification

Full Text:



Bebis G., Egbert D., Shah M., 2003. Review Of Computer Vision Education. Ieee Trans Educ 46, 2-21. http://dx.doi.org/10.1109/TE.2002.808280

Chen X., Xun Y., Li W., Zhang J., 2010. Combining Discriminant Analysis And Neural Networks For Corn Variety Identification. Comput Electron Agric 71, 48-53. http://dx.doi.org/10.1016/j.compag.2009.09.003

Choudhary R., Paliwal J., Jayas D.S., 2008. Classification Of Cereal Grains Using Wavelet, Morphological, Colour And Textural Features Of Non-Touching Kernels Images. Biosyst Eng 99, 330-337. http://dx.doi.org/10.1016/j.biosystemseng.2007.11.013

Choudhary R., Mahesh S., Paliwal J., Jayas D.S., 2009. Identification Of Wheat Classes Using Wavelet Features From Near Infrared Hyperspectral Images Of Bulk Samples. Biosyst Eng 102, 115-127. http://dx.doi.org/10.1016/j.biosystemseng.2008.09.028

Chtioui Y., Bertrand D., Devaux M.F., Barba D., 1996. Application Of A Hybrid Neural Network For The Discrimination Of Seeds By Artif Icial Vision. Proc Viii Ieee Intnl Conf On Tools With Artificial Intelligence, Toulousse, France, Nov 16. Pp. 484-489. http://dx.doi.org/10.1109/TAI.1996.560797

Churchill D.B., Bilsland D.M., Cooper T.M., 1993. Separation Of Mixed Lots Of Tall Fescue And Ryegrass Seed Using Machine Vision. T Asae 36, 1383-1386.

Duda R.O, Hart P.E., Stork D.G., 2001. Pattern Classification. Willey Interscience, Ny, Usa. 738 Pp.

Gonzalez R.C., Woods R.E., 2006. Digital Image Processing. Prentice-Hall, Ny, Usa. 954 Pp.

Granitto P.M., Navone H.D., Verdes P.F., Ceccatto H.A., 2002. Weed Seeds Identification By Machine Vision. Comput Electron Agric 33, 91-103. http://dx.doi.org/10.1016/S0168-1699(02)00004-2

Leemans V., Destain M.F., 2007. A Computer-Vision Based Precision Seed Drill Guidance Assistance. Comput Electron Agric 59, 1-12. http://dx.doi.org/10.1016/j.compag.2007.04.003

Luo X., Jayas D.S., Symons S.J., 1999. Identification Of Damaged Kernels In Wheat Using A Colour Machine Vision System. J Cereal Sci 30, 49-59. http://dx.doi.org/10.1006/jcrs.1998.0240

Majumdar S., Jayas D.S., 2000a. Classification Of Cereal Grains Using Machine Vision: I. Morphology Models. T Asae 43, 1669-1675.

Majumdar S., Jayas D.S., 2000b. Classif Ication Of Cereal Grains Using Machine Vision: Ii. Color Models. T Asae 43, 1677-1680.

Majumdar S., Jayas D.S., 2000c. Classif Ication Of Cereal Grains Using Machine Vision: Iii. Texture Models. T Asae 43, 1681-1687.

Majumdar S., Jayas D.S., 2000d. Classification Of Cereal Grains Using Machine Vision: Iv. Combined Morphology, Color, And Texture Models. T Asae 43, 1689-1694.

Marchant J.A., Onyango C.M., Street M.J., 1990. Computer Vision For Potato Inspection Without Singulation. Comput Electron Agric 4, 235-244. http://dx.doi.org/10.1016/0168-1699(90)90022-H

Paliwal J., Shashidhar N.S., Jayas D.S., 1999. Grain Kernel Identification Using Kernel Signature. T Asae 42, 1921-1924.

Paliwal J., Visen N.S., Jayas D.S., White N.D.G., 2003. Cereal Grain And Dockage Identification Using Machine Vision. Biosyst Eng 85, 51-57. http://dx.doi.org/10.1016/S1537-5110(03)00034-5

Parker J.R., 1993. Practical Computer Vision Using C. John Wiley & Sons, Ny, Usa. Pp. 476.

Pearson T., Brabec D., Scott H., 2008. Color Image Based Sorter For Separating Red And White Wheat. Sensing And Instrumentation For Food Quality And Safety 2, 280-288. http://dx.doi.org/10.1007/s11694-008-9062-0

Theodoridis S., Koutroumbas K., 2006. Pattern Recognition. Elsevier, San Diego, Usa. 837 Pp.

Visen N., Paliwal J., Jayas D.S., 2002. Algorithm Development For Grain Kernel Identification. Ieee Canadian Conf On Electrical And Computer Engineering. Manitoba, Canada. Vol. 2, Pp. 963-967.

Wan Y.N., Lin C.M., Chiou J.F., 2002. Rice Quality Classification Using And Automatic Grain Quality Inspection System. T Asae 45, 379-387.

Webb A.R., 2002. Statistical Pattern Recognition. John Wiley & Sons, Ltd, Chichester, Uk. 496 Pp.

Zayas I., Pomeranz Y., Lai F.S., 1989. Discrimination Of Wheat And Nonwheat Components In Grain Samples By Image-Analysis. Cereal Chem 66, 233-237.

DOI: 10.5424/sjar/20110903-140-10