Thermal conductivity of safflower (Carthamus tinctorius L.) seeds

M. Kara, I. Ozturk, S. Bastaban, F. Kalkan

Abstract


The thermal conductivity of agricultural seeds has been used as engineering parameter in the design of processes and machines for drying, storing, aeration and refrigeration. The thermal conductivity of safflower seeds was determined and its changes with moisture content, bulk density and cultivar investigated. The thermal conductivity values of cv. Remzibey-05 increased from 0.105 to 0.132 W m–1 K–1 and from 0.108 to 0.137 W m–1 K–1 for low and high (loose and dense) bulk densities, respectively, as the moisture content increased from 5.79 to 20.38% db. Likewise, the thermal conductivity values of cv. Dinçer increased from 0.106 to 0.137 W m–1 K–1 and from 0.110 to 0.140 W m–1 K–1 for low and high bulk densities, respectively in the moisture range of 5.07 to 20.30% db. The thermal conductivity values obtained with the high bulk density was higher than those obtained with the low bulk density for both cultivars. The thermal conductivity value of cv. Dinçer seeds was lower than that of cv. Remzibey-05 seeds.


Keywords


bulk density; moisture content

Full Text:

PDF

References


Alagusundaram A., Jayas D.S., Muir W.E., White N.D.G., 1991. Thermal conductivities of bulk barley, lentils, and peas. T ASAE 34(4), 1784-1788.

Al-Mahasneh M.A., Ababneh H.A., Rababah T., 2008. Some engineering and thermal properties of black cumin (Nigella sativa) seeds. Int J Food Sci Tech 43, 1047-1052. http://dx.doi.org/10.1111/j.1365-2621.2007.01561.x

Altuntas¸ E., Yildiz M., 2007. Effect of moisture content on some physical and mechanical properties of faba bean (Vicia faba L.) grains. J Food Eng 78, 174-183. http://dx.doi.org/10.1016/j.jfoodeng.2005.09.013

Aviara N.A., Haque M.A., 2001. Moisture dependence of thermal properties of sheanut kernel. J Food Eng 47, 109-113. http://dx.doi.org/10.1016/S0260-8774(00)00105-9

Aviara N.A., Haque M.A., Ogunjimi L.A.O., 2008. Thermal properties of guna seed. Int Agrophys 22, 291-297.

Bamgboye A.I., Adejumo O.I., 2010. Thermal properties of roselle seeds. Int Agrophys 24, 85-87.

Baümler E., Cunibert A., Nolasco S.M., Riccibene I.C., 2006. Moisture dependent physical and compression properties of safflower seed. J Food Eng 72, 134-140. http://dx.doi.org/10.1016/j.jfoodeng.2004.11.029

Blackwell J.H., 1956. The axial-flow error in the thermal conductivity probe. Can J Physics 34(4), 412-417. http://dx.doi.org/10.1139/p56-048

Chang C.S., 1986. Thermal conductivity of wheat, corn, and grain sorghum as affected by bulk density and moisture content. T ASAE 29(5), 1447-1450.

Dog˘Antan Z.S., Ünsal M., 1991. Susamın ısıl iletkenlik katsayısının ısıl iletkenlik sondası ile ölçülmesi. T. Mek. 13. Ulusal Kong. Konya, 25-27 Eylül, pp. 431-439. [In Turkish].

Dutta S.K., Nema V.K., Bhardvaj R.K., 1988. Thermal properties of gram. J Agr Eng Res 39, 269-275. http://dx.doi.org/10.1016/0021-8634(88)90148-5

Hacikuru I., Kocabiyik H., 2008. Thermal properties of coriander and anise seeds. Philipp Agric Sci 91(4), 401-407.

Hooper F.C., Lepper F.R., 1950. Transient heat flow apparatus for determination of the conductivities. Ashve Trans 56, 309-322.

Hsu M.H., Mannapperuma J.D., Singh R.P., 1991. Physical and thermal properties of pistachios. J Agric Eng Res 49, 311-321 http://dx.doi.org/10.1016/0021-8634(91)80047-I

IBM, 2010. IBM SPSS® Statistics, SSS Inc, IBM Company,Version 18.

Kayisoglu B., Kocabiyik H., Akdemir B., 2004. The effect of moisture content on the thermal conductivities of some cereal grains. J Cereal Sci 39, 147-150. http://dx.doi.org/10.1016/S0733-5210(03)00047-X

Kazarian E.A., Hall C.W., 1965. Thermal properties of grain. T ASAE 8(1), 33-37,48.

Kocabiyik H., Kayis¸Oglu B., Tezer D., 2009. Effect of moisture content on thermal properties of pumpkin seed. Int J Food Prop 12(2), 277-285. http://dx.doi.org/10.1080/10942910701673519

Morita T., Singh R.P., 1979. Physical and thermal properties of short-grain rough rice. T ASAE 22, 630-636.

Munde A.V., 1998. Effect of moisture content on thermal properties of soybean. J Maharashtra Agric Univ 23(3),291-294.

Shrivastava M., Datta A.K., 1999. Determination of specific heat and thermal conductivity of mushrooms (Pleurotus florida). J Food Eng 39, 255-260. http://dx.doi.org/10.1016/S0260-8774(98)00145-9

Singh K.K., Goswami T.K., 2000. Thermal properties of cumin seed. J Food Eng 45, 181-187. http://dx.doi.org/10.1016/S0260-8774(00)00049-2

Singh K.K., Mohammad S., Kotwaliwale N.,2008. Moisture dependent physical and thermal properties of chickpea. J Food Sci 45(3), 259-262.

Subramanian S., Viswanathan R., 2003. Thermal properties of minor millet grains and flours. Biosyst Eng 84(3), 289-296. http://dx.doi.org/10.1016/S1537-5110(02)00222-2

Suthar S.H., Das S.K., 1996. Some physical properties of karingda [Citrullus lanatus (Thumb) Mansf] seeds. J Agric Eng Res 65, 15-22. http://dx.doi.org/10.1006/jaer.1996.0075

Sweat V.E., 1974. Experimental values of thermal conductivity fruits and vegetables. J Food Sci 39, 1080-1083. http://dx.doi.org/10.1111/j.1365-2621.1974.tb07323.x

Tansakul A., Chaisawang P., 2006. Thermo physical properties of coconut milk. J Food Eng 73, 276-280. http://dx.doi.org/10.1016/j.jfoodeng.2005.01.035

Tansakul A., Lumyong R., 2008. Thermal properties of straw mushroom. J Food Eng 87, 91-98. http://dx.doi.org/10.1016/j.jfoodeng.2007.11.016

Tavman S., Tavman I.H., 1998. Measurement of effective thermal conductivity of wheat as a function of moisture content. Int Commun Heat Mass 25(5), 733-741. http://dx.doi.org/10.1016/S0735-1933(98)00060-8

Yang W., Sokhansanj S., Tang J., Winter P., 2002. Determination of thermal conductivity, specific heat and thermal diffusivity of borage seeds. Biosyst Eng 82(2), 169-176. http://dx.doi.org/10.1006/bioe.2002.0066




DOI: 10.5424/sjar/20110903-311-10