Clustering of grape yield maps to delineate site-specific management zones

J. Arno, J. A. Martinez-Casasnovas, M. Ribes-Dasi, J. R. Rosell

Abstract


Zonal management in vineyards requires the prior delineation of stable yield zones within the parcel. Among the different methodologies used for zone delineation, cluster analysis of yield data from several years is one of the possibilities cited in scientific literature. However, there exist reasonable doubts concerning the cluster algorithm to be used and the number of zones that have to be delineated within a field. In this paper two different cluster algorithms have been compared (k-means and fuzzy c-means) using the grape yield data corresponding to three successive years (2002, 2003 and 2004), for a ‘Pinot Noir’ vineyard parcel. Final choice of the most recommendable algorithm has been linked to obtaining a stable pattern of spatial yield distribution and to allowing for the delineation of compact and average sized areas. The general recommendation is to use reclassified maps of two clusters or yield classes (low yield zone and high yield zone) and, consequently, the site-specific vineyard management should be based on the prior delineation of just two different zones or sub-parcels. The two tested algorithms are good options for this purpose. However, the fuzzy c-means algorithm allows for a better zoning of the parcel, forming more compact areas and with more equilibrated zonal differences over time.


Keywords


cluster analysis; fuzzy c-means algorithm; grape yield maps; k-means algorithm; precision viticulture; zonal management

Full Text:

PDF

References


Arnó J., Martínez-Casasnovas J.A., Ribes-Dasi M., Rosell J.R., 2009. Review. Precision viticulture. Research topics, challenges and opportunities in sitespecific vineyard management. Span J Agric Res 7(4), 779-790.

Blackmore S., 2000. The interpretation of trends from multiple yield maps. Comput Electron Agric 26, 37-51. http://dx.doi.org/10.1016/S0168-1699(99)00075-7

Bocchi S., Castrignanò A., 2007. Identification of different potential production areas for corn in Italy through multitemporal yield map analysis. Field Crop Res 102, 185-197. http://dx.doi.org/10.1016/j.fcr.2007.03.012

Boydell B., Mcbratney A.B., 2002. Identifying potential within-field management zones from cotton-yield estimates. Precis Agric 3, 9-23. http://dx.doi.org/10.1023/A:1013318002609

Bramley R.G.V., Hamilton R.P., 2004. Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Aust J Grape Wine Res 10, 32-45. http://dx.doi.org/10.1111/j.1755-0238.2004.tb00006.x

Cupitt J., Whelan B.M., 2001. Determining potential within-field crop management zones. Proc III ECPAEuropean Conference on Precision Agriculture, Montpellier, France, June 18-21. pp. 7-12.

Diker K., Heermann D.F., Brodahl M.K., 2004. Frequency analysis of yield for delineating yield response zones. Precis Agric 5, 435-444. http://dx.doi.org/10.1007/s11119-004-5318-9

Fridgen J.J., Kitchen N.R., Sudduth K.A.,Drummond S.T., Wiebold W.J., Fraisse C.W., 2004. Management zone analyst (MZA): software for subfield management zone delineation. Agron J 96, 100-108. http://dx.doi.org/10.2134/agronj2004.0100

Guastaferro F., Castrignanò A., De Benedetto D., Sollitto D., Troccoli A., Cafarelli B., 2010. A comparison of different algorithms for the delineation of management zones. Precis Agric 11, 600-620. http://dx.doi.org/10.1007/s11119-010-9183-4

King J.A., Dampney P.M.R., Lark R.M., Wheeler H.C., Bradley R.I., Mayr T.R., 2005. Mapping potential crop management zones within fields: use of yieldmap series and patterns of soil physical properties identified by electromagnetic induction sensing. Precis Agric 6, 167-181. http://dx.doi.org/10.1007/s11119-005-1033-4

Lark R.M., 1998. Forming spatially coherent regions by classification of multivariate data: an example from the analysis of maps of crop yield. Int J Geogr Inf Sci 12(1), 83-98. http://dx.doi.org/10.1080/136588198242021

Lark R.M., Stafford J.V., 1997. Classification as a first step in the interpretation of temporal and spatial variation of crop yield. Ann Appl Biol 130, 111-121. http://dx.doi.org/10.1111/j.1744-7348.1997.tb05787.x

Minasny B., Mcbratney A.B., Whelan B.M., 2005. Vesper version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, The University of Sydney, NSW 2006. Available in http://www.usyd.edu.au/su/agric/acpa [15 November, 2010]

Ortega R.A., Santibáñez O.A., 2007. Determination of management zones in corn (Zea mays L.) based on soil fertility. Comput Electron Agric 58, 49-59. http://dx.doi.org/10.1016/j.compag.2006.12.011

Panneton B., Brouillard M., Piekutowski T., 2001. Integration of yield data from several years into a single map. Proc III ECPA-European Conference on Precision Agriculture, Montpellier, France, June 18-21. pp. 73-78.

Ping J.L., Dobermann A., 2005. Processing of yield map data. Precis Agric 6, 193-212. http://dx.doi.org/10.1007/s11119-005-1035-2

Shatar T.M., Mcbratney A.B., 2001. Subdividing a field into contiguous management zones using a k-zone algorithm. Proc III ECPA-European Conference on Precision Agriculture, Montpellier, France, June 18-21. pp. 115-120.

Taylor J.C., Wood G.A., Earl R., Godwin R.J., 2003. Soil factors and their influence on within-field crop variability, part II: spatial analysis and determination of management zones. Biosyst Eng 84 (4), 441-453. http://dx.doi.org/10.1016/S1537-5110(03)00005-9

Taylor J.A., Mcbratney A.B., Whelan B.M., 2007. Establishing management classes for broadacre agricultural production. Agron J 99(5), 1366-1376. http://dx.doi.org/10.2134/agronj2007.0070

Yan L., Zhou S., Feng L., Hong-Yi L., 2007. Delineation of site-specific management zones using fuzzy clustering analysis in a coastal saline land. Comput Electron Agric 56, 174-186. http://dx.doi.org/10.1016/j.compag.2007.01.013




DOI: 10.5424/sjar/20110903-456-10