Modelization of the spatial distribution of corn head smut (Sporisorium reilianum Langdon and Fullerton) in Mexico

J.R. Sanchez-Pale, J.F. Ramirez-Davila, A. Gonzalez-Huerta, C. de Leon


Sporisorium reilianum has caused significant economical damages in Mexico, in temperate and relatively dry areas, where maize is cultivated. The knowledge about the spatial distribution of this pathogen is basic to elaborate integrated management programs, and precise and efficient the development of sampling methods and control techniques. Unfortunately, in Mexico there are no studies on spatial behavior of this disease. For this reason, this study was developed to model S. reilianum spatial distribution by the year 2008; and also, to establish its spatial behavior with geostatistics techniques. The sampling method established 100 points for each of 30 locations of 27 municipalities in the State of Mexico. In each point, 500 plants were counted and those presenting symptoms of the disease were recorded. A geostatistical analysis was done in order to estimate the experimental semivariograms. It was adjusted to theoretical models (spherical, exponential or gaussian) with the program Variowin 2.2; later, it was evaluated through the crossed validation with the geostatistical interpolation method or kriging. Finally, aggregation maps of the disease were elaborated. The disease was found in 30 sampled locations; all of them presented an aggregated spatial pattern of the disease. Twenty one locations were adjusted to the spherical model, five to the exponential model and two to the Gaussian model. Aggregation maps were established in all models. It was observed that S. reilianum was not uniform in the assess areas. Results showed the spatial distribution of S. reilianum and real infestation in field using geostatistical techniques. 


geostatistics; kriging; Zea mays.

Full Text:



Armstrong M., Jabin R., 1981. Variogram models must be positive-definite. Math Geol 13, 455-459.

Blom E., Fleischer S., 2001. Dynamics in the spatial structure of Leptinotarsa decemlineata (Coleoptera:Chrysomelidae). Environ Entomol 30, 350-364.

Boiteu G., Bradley J., Van Duyn J., Stinner R., 1979. Bean leaf beetle: micro-spatial patterns and sequential sampling of field populations. Environ Entomol 8, 1139-1104.

Cambardella C., Moorman T., Novak J., Parkin T., Karlen D., Turco R., Konopka A., 1994. Field scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58, 1501-1511.

Campbell C., Benson D., 1994. Importance of the spatial dimension for analyzing root disease epidemics. In: Epidemiology and management of root diseases (Campbell C.L., Benson D.M., eds). Springer-Verlag,Berlin Heidelberg, Germany. 344 pp. CESAVEM., 2005. Carbón de la espiga del maíz. Campaña manejo fitosanitario del cultivo del maíz. SENASICASAGARPA-SEDAGRO. Folleto para productores. Toluca, Estado de México. 6 pp. [In Spanish].

De Leon C., 2008. Enfermedades importantes. In: El cultivo del maíz. Temas selectos (Rodríguez M.R., De León C., eds). Colegio de Postgraduados-Mundi-Prensa, México DF. pp. 47- 62. [In Spanish].

Englund E., Sparks A., 1988. GEO-EAS (geostatistical environmental assessment software) user's guide. US Environmental Protection Agency Document EPA/600/4-88/033. Environmental Monitoring Systems Laboratory, Las Vegas, NV, USA. 128 pp.

Fleischer S., Weisz R., Smilowitz Z., Midgarden D., 1997. Spatial variation in insect populations and sitespecific integrated pest management. In: The state of sitespecific management for agriculture (Pierce F.J., Sadler E.J., eds). ASA Miscellaneous Publ, Madison, WI, USA. pp. 101-130.

Fleischer J., Blom E., Weisz R., 1999. Sampling in precision IPM: when the objective is a map. Hytopathology 89, 115-118.

Gavassoni W.L., Tylka G.L., Munkvold G.P., 2001. Relationships between tillage and spatial patterns of Heterodera glycines. Phytopathology 91, 534-545. PMid:18943941

Groves R.L., Chen J., Civerolo E.L., Freeman M.W., Viveros M.A., 2005. Spatial analysis of almond leaf scorch disease in the San Joaquin Valley of California:factors affecting pathogen distribution and spread. Plant Dis 89, 581-589.

Hao J.J., Subbarao K.V., 2005. Comparative analyses of lettuce drop epidemics caused by Sclerotinia minor and S. sclerotiorum. Plant Dis 89, 717-725.

Hay F.S., Pethybridge S.J., 2005. Nematodes associated with carrot production in Tasmania, Australia, and the effect of Pratylenchus crenatus on yield and quality of Kuroda-type carrot. Plant Dis 89, 1175-1180.

Hevesi J., Istok J., Flint A., 1992. Precipitation estimation in mountainous terrain using multivariate geostatistics. Part I. Structural analysis. J Appl Meteorol 31, 661-676.<0661:PEIMTU>2.0.CO;2

Isaaks E.H., Srivastava R.M., 1988. Spatial distribution of the montane unicorn. Oikos 58, 257-271.

Isaaks E.H., Srivastava R.M., 1989. An introduction to applied geostatistics. Oxford Univ Press, NY. 561 pp.

Journel A.G., Huijbregtsb C.J., 1978. Mining geostatistics. Academic Press, London, UK. 600 pp.

Larkin R.P., Gumpertz M.L., Ristaino J.B., 1995. Geostatistical analysis of Phytophthora epidemic development in comercial bell pepper fields. Phytopathology 85, 191-203.

López-Granados F., Jurado-Expósito M., Atenciano S., García-Ferrer A., Sánchez M., García-Torres L., 2002. Spatial variability of agricultural soil parameters in southern Spain. Plant Soil 246, 97-105.

Mouen Bedimo J.A., Bieysse D., Cilas C., Nottéghem J.L., 2007. Spatio-temporal dynamics of arabica coffee berry disease caused by Colletotrichum kahawae on a plot scale. Plant Dis 91, 1229-1236.

Nava-Díaz C., 2009. Definición de disposición espacial de patógenos vegetales. In: Tópicos selectos de estadística aplicados a la fitosanidad (Bautista M.N., Soto L., Pérez, R., eds). Colegio de Postgraduados, Texcoco, México. pp. 110-114. [In Spanish].

Oliver M., Webster R., 1991. How geostatistics can help you. Soil Use Manage 7, 206-217.

Pataky J. K., 1999. Smuts. In: Compendium of corn diseases (White D.G., ed), 3rd ed. APS Press, St Paul, MN, USA. pp. 33-55.

Ritchie S.W., Hanway J.J., 1982. How a corn plant develops. Iowa St Univ Sci Technol, Coop Ext Serv Ames, IA, USA. 17 pp.

Rossi R., Mulla J., Journel G., Franz H., 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 62, 277-314.

Roumagnac P., Pruvost O., Chiroleu F., Hughes G., 2004. Spatial and temporal analyses of bacterial blight of onion caused by Xanthomonas axonopodis pv. allii.Phytopathology 94, 138-146. PMid:18943536

Ruesink W., 1980. Introduction to sampling theory. In:Sampling methods in soybean entomology (Kogan M., Herzo D., eds). Springer Verlag, NY. pp. 61-78.

Sarh, 1992. Guía fitosanitaria para el cultivo del maíz. Serie Sanidad Vegetal. Secretaría de Agricultura y Recursos Hidráulicos, México DF. 14 pp. [In Spanish].

Sciarretta A., Trematerra P., Baumgartner J., 2001. Geostatistical analysis of Cydia funebrana (Lepidoptera:Tortricidae) pheromone trap catches at two spatial scales. Am Entomol 47, 174-184.

Speight M., Hails R., Gilbert M., Foggo A., 1998. Horse chestnut scale Pulvinaria regalis (Homoptera:Coccidae) and urban host tree environment. Ecology 79, 1503-1513.

Taylor L., 1961. Aggregation, variance and the mean. Nature 189, 732-735.

Taylor L., 1984. Assessing and interpreting the spatial distributions of insect populations. Ann Rev Entomol 29, 321-357.

Turechek W.W., Madden L.V., 1999. Spatial pattern analysis and sequential sampling for the incidence of leaf spot on strawberry in Ohio. Plant Dis 83, 992-1000.

Weisz R., Fleischer S., Smilowitz Z., 1996. Sitespecific integrated pest management for high value crops:Sample units for map generation using the Colorado potato beetle (Coleoptera: Chrysomelidae) as a model system. J Econ Entomol 88, 1069-1080.

Workneh F., Villanueva E., Steddom K., Rush C.M., 2003. Spatial association and distribution of Beet necrotic yellow vein virus and Beet soilborne mosaic virus in sugar beet fields. Plant Dis 87, 707-711.

DOI: 10.5424/sjar/20110903-277-10