Arbuscular mycorrhiza, rhizospheric microbe populations and soil enzyme activities in citrus orchards under two types of no-tillage soil management

  • P. Wang Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei Province,
  • J. J. Zhang Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei Province,
  • R. X. Xia Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei Province,
  • B. Shu Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, Hubei Province,
  • M.Y. Wang College of Chemical Engineering, Huaqiao University, Xiamen, 361021, Fujian Province
  • Q.S. Wu College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei Province
  • T. Dong Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong Province
Keywords: AM colonization, AM hyphal length density, AM spore density, natural grass cover, soil bacteria, fungi and actinomycetes, soil catalase, invertase, urease and phosphatase

Abstract

The arbuscular mycorrhizal (AM) status [total AM colonization (RLT), percentage of root length with arbuscules (RLA) and vesicles (RLV), spore density and hyphal length density], microbial populations and soil enzyme activities were investigated in citrus (Satsuma Mandarin grafted on Poncirus trifoliata L. Raf) orchards. Two types of no-tillage soil management, natural grass cover and use of herbicides, were employed in these orchards. The citrus AM colonization (37.26-70.09%) was high in all the experimental orchards sampled. The highest RLA (43.83%), spore density (384.63 spores/100 g soil), hyphal length density (4.09 m g–1 soil), rhizospheric microbial populations and enzyme activities were observed in the orchards with a natural grass cover, and the lowest values, except urease activity, were found in the orchards treated with herbicides. Spore density, hyphal length density, catalase activity and phosphatase activity varied notably between no-tillage/natural grass and no-tillage/herbicides treated orchards in the soil layers above 40 cm. A correlation analysis showed that the hyphal length density and organic matter were significantly positively correlated. Soil enzyme activities, except phosphatase, were strongly correlated with the bacteria populations. The data presented here demonstrates that the RLA, spore density, hyphal length density, rhizospheric microbe populations and enzyme activities were significantly better in the soil layers above 40 cm of orchards with a natural grass cover than herbicidetreated soils. So, the establishment of a natural grass cover benefits soil quality in citrus orchards in Southern China.

Downloads

Download data is not yet available.

References

Alegre A.C.P., Polizeli M.L.T.M., Terenzi H.F., Jorge J.A., Guimarães L.H.S., 2009. Production of thermostable invertases by Aspergillus caespitosus under submerged or solid state fermentation using agroindustrial residues as carbon source. Braz J Microbiol 40, 621-622. http://dx.doi.org/10.1590/S1517-83822009000300025

Artursson V., Finlay R.D., Jansson J.K., 2005. Combined bromodeoxyuridine immunocapture and terminal restriction fragment length polymorphism analysis highlights differences in the active soil bacterial metagenome due to Glomus mosseae inoculation or plant species. Environ Microbiol 7, 1952-1966. http://dx.doi.org/10.1111/j.1462-2920.2005.00868.x

BAREA J.M., 2000. Rhizosphere and mycorrhiza of field crops. In: Biological resource management:connecting science and policy (OECD) (Toutant J.P. et al., eds). INRA Ed and Springer-Berlin. pp. 110-125. http://dx.doi.org/10.1007/978-3-662-04033-1_7

Barea J.M., Tobar R.M., Azcón-Aguilar C., 1996. Effect of a genetically modified Rhizobium meliloti inoculant on the development of arbuscular mycorrhizas, root morphology, nutrient uptake and biomass accumulation in Medicago sativa. New Phytol 134, 361-369. http://dx.doi.org/10.1111/j.1469-8137.1996.tb04641.x

Barea J.M., Azcón R., Azcón-Aguilar C., 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Anton Leeuw Int J G 81, 343-351. http://dx.doi.org/10.1023/A:1020588701325

Bethlenfalvay G.J., Ames R.N., 1987. Comparison of two methods for quantifying extraradical mycelium of vesicular arbuscular mycorrhizal fungi. Soil Sci Soc Am J 51, 834-837. http://dx.doi.org/10.2136/sssaj1987.03615995005100030049x

Boddington C.L., Dodd J.C., 2000. The effect of agricultural practices on the development of indigenous arbuscular mycorrhizal fungi. II. Studies in experimental microcosms. Plant Soil 218, 145-157. http://dx.doi.org/10.1023/A:1014911318284

Brady N.C., Weil R.R., 1999. Soil organic matter. In: The nature and properties of soils. Upper Saddle River, NJ, USA. pp. 446-490.

Burne R.A., Chen Y.Y.M., 2000. Bacterial ureases in infectious diseases. Microbes Infect 2, 553-542. http://dx.doi.org/10.1016/S1286-4579(00)00312-9

Burrows R.L., Pfleger F.L., 2002. Arbuscular mycorrhizal fungi respond to increasing plant diversity. Can J Bot 80, 120-130. http://dx.doi.org/10.1139/b01-138

Chen X., Tang J.J., Fang Z.G., Shimizu K., 2004. Effects of weed communities with various species numbers on soil features in a subtropical orchard ecosystem. Agr Ecosyst Environ 102, 377-388. http://dx.doi.org/10.1016/j.agee.2003.08.006

Christensen H., Jakobsen I., 1993. Reduction of bacterial growth by a vesicular arbuscular mycorrhizal fungus in the rhizospheric of cucumber (Cucumis sativus L.). Biol Fert Soils 15, 253-258. http://dx.doi.org/10.1007/BF00337209

Dhruva Kumar J.H.A., Sharha G.D., Mishra R.R., 1992. Soil microbial population numbers and enzyme activities in relationto altitude and forest degradation. Soil Biol Biochem 24, 761-767. http://dx.doi.org/10.1016/0038-0717(92)90250-2

Frankenberger W.T. Jr, DICK W.A., 1983. Relationships between enzyme activities and microbial growth and activity indices in soil. Soil Sci Soc Am J 47, 945-951. http://dx.doi.org/10.2136/sssaj1983.03615995004700050021x

Garbaye J., 1994. Helper bacteria:a new dimension to the mycorrhizal symbiosis. New Phytol 128, 197-210. http://dx.doi.org/10.1111/j.1469-8137.1994.tb04003.x

Gaur A., Adholeya A., 2004. Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Curr Sci India 86, 528-534.

Gerdemann J.W., Nicolson T.H., 1963. Spores of micorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46, 235-244. http://dx.doi.org/10.1016/S0007-1536(63)80079-0

GIRI B., GIANG P.H., KUMARI R., PRASAD R., VARMA A., 2005. Microbial diversity in soil. In: Soil biology, vol 3. Microorganisms in soils: roles in genesis and functions (Buscot F., Varma A., eds). Springer, Berlin. pp. 19-55. http://dx.doi.org/10.1007/3-540-26609-7_2

Goicoechea N., Garmendia I., Sánchez-Díaz M., Aguirreolea J., 2010. Arbuscular mycorrhizal fungi (AMF) as bioprotector agents against wilt induced by Verticillium spp. in pepper. Span J Agric Res 8(S1), S25-S42. http://dx.doi.org/10.5424/sjar/201008S1-5300

Gregory P., 2006. Plant roots-growth, activity and interaction with soils. Blackwell, Oxford, 318 pp.

Jansa J., Mozafar A., Kuhn G., Anken T., Ruh R., Sanders I.R., Frossard E., 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecol Appl 13, 1164–1176. http://dx.doi.org/10.1890/1051-0761(2003)13[1164:STATCS]2.0.CO;2

Jastrow J.D., Miller R.M., Lussenhop J., 1998. Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol Biochem 30, 905–916. http://dx.doi.org/10.1016/S0038-0717(97)00207-1

Johansson J.F., Paul L.R., Finlay R.D., 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol Ecol 48, 1-13. http://dx.doi.org/10.1016/j.femsec.2003.11.012

John T.S., Leo M.C., 2003. Dynamics and availability of phosphorus in the rhizosphere of a temperate silvopastoral system. Biol Fert Soils 39, 65-73. http://dx.doi.org/10.1007/s00374-003-0678-2

Johnson L.F., Curl E.A., 1972. Methods for research on ecology of soil-borne pathogens. Burgess Publ Co, Minneapolis, MN, USA.

Kandeler E., Gerber H., 1988. Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fert Soils 6, 68-72. http://dx.doi.org/10.1007/BF00257924

Kabir Z., Óhalloran I.P., Hamel C., 1996. The proliferation of fungal hyphae in soils supporting mycorrhizal and non-mycorrhizal plants. Mycorrhiza 6, 477-480. http://dx.doi.org/10.1007/s005720050150

Kennedy A.C., De Luna L.Z., 2004. Rhizosphere. In: Encyclopedia of soils in the environment (Hillel D., ed). Elsevier Ltd, Oxford, UK. pp. 399-406.

Khan A.G., 2005. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18, 355-364. http://dx.doi.org/10.1016/j.jtemb.2005.02.006

Koske R.E., Gemma J.N., 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92, 486-488. http://dx.doi.org/10.1016/S0953-7562(89)80195-9

Lee J.J., Park R.D., Kim Y.W., Shim J.H., Chae D.H., Rim Y.S., Sohn B.K., Kim T.H., Kim K.Y., 2004. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresour Technol 93, 21-28. http://dx.doi.org/10.1016/j.biortech.2003.10.009

Li L.F., Zhang Y., Zhao Z.W., 2007. Arbuscular mycorrhizal colonization and spore density across different land-use types in a hot and arid ecosystem, Southwest China. J Plant Nutr Soil Sc 170, 419-425. http://dx.doi.org/10.1002/jpln.200625034

Li X.L., George E., Marschner H., 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil 136, 41–48. http://dx.doi.org/10.1007/BF02465218

Linderman R.G., 1994. Role of VAM fungi in biocontrol. In: Mycorrhizae and plant health (Pfleger F.L., Linderman R.G., eds). APS Press, St Paul, MN, USA. pp. 1-26.

Linderman R.G., 2000. Effects of mycorrhizas on plant tolerance to diseases. In: Arbuscular mycorrhizas: physiology and function (Kapulnik Y., Douds D.D.J., eds). Kluwer Academic Publishers, Dordrecht, the Netherlands. pp. 345-365. http://dx.doi.org/10.1007/978-94-017-0776-3_15

Liu S.H., Liu S.Q., Zhang Z.K., Wei H., Qi J.J., Duan J.F., 2010. Influence of garlic continuous cropping on rhizosphere soil microorganisms and enzyme activities. Scientia Agricultura Sinica 43, 1000-1006.

McGonigle T.P., Miller M.H., Evans D.G., Fairchild G.L., Swan J.A., 1990. A new method which gives an objective measure of colonisation of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115, 495-501. http://dx.doi.org/10.1111/j.1469-8137.1990.tb00476.x

Meir D., Pivonia S., Levita R., Dori I., Ganot L., Meir S., Salim S., Resnick N., Wininger S., Shlomo E., Koltai H., 2010. Application of mycorrhizae to ornamental horticultural crops: lisianthus (Eustoma grandiflorum) as a test case. Span J Agric Res 8(S1), S5-S10. http://dx.doi.org/10.5424/sjar/201008S1-1221

Miller R.M., Reinhardt D.R., Jastrow J.D., 1995. External hyphal production of vesicular arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103, 17-23. http://dx.doi.org/10.1007/BF00328420

Nadja F., Roger F., Thomas B., Malin E., 2010. Functional diversity in arbuscular mycorrhiza–the role of gene expression, phosphorous nutrition and symbiotic efficiency. Fungal Ecol 3, 1-8. http://dx.doi.org/10.1016/j.funeco.2009.07.003

Nannipieri P., Ceccanti C., Servelli S., Matarese E., 1980. Extraction of phosphatase, urease, protease, organic carbon and nitrogen from soil. Soil Sci Soc Am J 44, 1011-1016. http://dx.doi.org/10.2136/sssaj1980.03615995004400050028x

Ocampo J.A., Barea J.M., 1985. Effect of carbamate herbicides on VA mycorrhizal infection and plant growth. Plant Soil 85, 375-383. http://dx.doi.org/10.1007/BF02220192

Olsson P.A., Bååth E., Jakobsen I., Söderström B., 1996. Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol Biochem 28, 463-470. http://dx.doi.org/10.1016/0038-0717(96)00011-9

Oskamp J., 1932. Ten rooting habit of deciduous fruits on different soils. Proc Amer Soc Hort Sci 29, 213-219.

Pascual J.A., Moreno J.L., Hernández T., Gaía C., 2002. Persistence of immobilized and total urease and phophatase activities in a soil amended with organic wastes. Bioresource Technol 82, 73-78. http://dx.doi.org/10.1016/S0960-8524(01)00127-4

Phillips J.M., Hayman D.S., 1970. Improve procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55, 158-161. http://dx.doi.org/10.1016/S0007-1536(70)80110-3

Pozo M.J., Azcón-Aguilar C., Dumas-Gaudot E., Barea J.M., 1999. β-1,3-glucanase activities in tomato roots inoculated with arbuscular mycorrhizal fungi and/or Phytophthora parasitica:time course analysis and possible involvement in bioprotection. Plant Sci 141, 149-157. http://dx.doi.org/10.1016/S0168-9452(98)00243-X

Ruíz-Lozano J.M., Azcón R., 1995. Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plantarum 95, 472-478. http://dx.doi.org/10.1111/j.1399-3054.1995.tb00865.x

Schreiner R.P., Mihara K.L., McDaniel H., Bethlenfalvay G.J., 1997. Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil 188, 199-209. http://dx.doi.org/10.1023/A:1004271525014

Shrestha Y.H., Ishii T., Kadoya K., 1995. Effect of vesicular-arbuscular mycorrhizal fungi on the growth, photosynthesis, transpiration and the distribution of photosynthates of bearing Satsuma mandarin trees. J Jpn Soc Hortic Sci 64, 517-25. http://dx.doi.org/10.2503/jjshs.64.517

Smith S.E., 1995. Discoveries, discussions and directions in mycorrhizal research. In: Mycorrhiza (Verma A., Hock B., eds). Springer-Verlag, Berlin. pp. 3-24. http://dx.doi.org/10.1007/978-3-662-08897-5_1

SMITH S.E., READ D.J., 2008. Mycorrhizal symbiosis. Academic Press, San Diego, USA.

TAN K.H., 1996. Soil sampling, preparation, and analysis. Marcel Dekker, NY, USA.

TORO M., AZCÓN R., BAREA J.M., 1998. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol 138, 265-273. http://dx.doi.org/10.1046/j.1469-8137.1998.00108.x

VAN DER HEIJDEN M.G.A., STRETWOLF-ENGEL R., RIEDL R., SIEGRISTi S., NEUDECKER A., INEICHEN K., BOLER T., WIEMKEN A., SANDERS I.R., 2006. The mycorrhizal contribution to plant productivity, plant nutrition and soil structure in experimental grassland. New Phytol 172, 739-752. http://dx.doi.org/10.1111/j.1469-8137.2006.01862.x

WANG M.Y., XIA R.X., WU Q.S., LIU J.H., HU L.M., 2007. Influence of arbuscular mycorrhizal fungi on microbes and enzymes of soils from different cultivated densities of red clover. Ann Microbiol 57,1-7. http://dx.doi.org/10.1007/BF03175042

WEIGAND S., AUERSWALD K., BECK T., 1995. Microbial biomass in agricultural topsoils after 6 years of bare fallow. Biol Fert Soils 19, 129-134. http://dx.doi.org/10.1007/BF00336148

WRIGHT S.F., UPADHYAYA A., 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97-107. http://dx.doi.org/10.1023/A:1004347701584

WU Q.S., XIA R.X., 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions. J Plant Physiol 163, 417-425. http://dx.doi.org/10.1016/j.jplph.2005.04.024

WU Q.S., XIA R.X., ZOU Y.N. 2006. Reactive oxygen metabolism in mycorrhizal and non-mycorrhizal citrus (Poncirus trifoliata) seedlings subjected to water stress. J Plant Physiol 163, 1101-1110. http://dx.doi.org/10.1016/j.jplph.2005.09.001

YA C.S., 1988. In: Research method of soil fertility. Chinese Agriculture Press, Beijing, China. pp. 277-279.

YAO Q., LIN F.X., CHEN J.Z., LEI X.T., ZHU H.H., 2008. Responses of citrus seedlings and a leguminous herb, Stylosanthes gracilis, to arbuscular mycorrhizal fungal inoculation. Acta Hortic 773, 63-67.

ZHAO L.P., JIANG Y., 1986. Discussion on measurements of soil posphatase. Chin J Soil Sci 17, 138-141.

How to Cite
Wang, P., Zhang, J. J., Xia, R. X., Shu, B., Wang, M., Wu, Q., & Dong, T. (1). Arbuscular mycorrhiza, rhizospheric microbe populations and soil enzyme activities in citrus orchards under two types of no-tillage soil management. Spanish Journal of Agricultural Research, 9(4), 1307-1318. https://doi.org/10.5424/sjar/20110904-307-10
Section
Soil science