Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouses

  • A. López Universidad de Almería. Campus de Excelencia Internacional Agroalimentario ceiA3. Ctra. de Sacramento s/n. 04120 Almería.
  • D. L. Valera Universidad de Almeria
  • F. D. Molina-Aiz Universidad de Almería. Campus de Excelencia Internacional Agroalimentario ceiA3. Ctra. de Sacramento s/n. 04120 Almería.
  • A. Peña Universidad de Almería. Campus de Excelencia Internacional Agroalimentario ceiA3. Ctra. de Sacramento s/n. 04120 Almería.
Keywords: buoyancy, insect-proof screens, natural ventilation, wind effect

Abstract

The present work describes a methodology for studying natural ventilation in Mediterranean greenhouses using sonic anemometry. The experimental work took place in the three-span greenhouse located at the agricultural research farm belonging to the University of Almería. This methodology has allowed us to obtain patterns of natural ventilation of the experimental greenhouse under the most common wind regimes for this region. It has also enabled us to describe how the wind and thermal effects interact in the natural ventilation of the greenhouse, as well as to detect deficiencies in the ventilation of the greenhouse, caused by the barrier effect of the adjacent greenhouse (imply a mean reduction in air velocity close to the greenhouse when facing windward of 98% for u, 63% for uy, and more importantly 88% for ux, the component of air velocity that is perpendicular to the side vent). Their knowledge allows us to improve the current control algorithms that manage the movement of the vents. In this work we make a series of proposals that could substantially improve the natural ventilation of the experimental greenhouse. For instance, install vents equipped with ailerons which guide the air inside, or with vents in which the screen is not placed directly over the side surface of the greenhouse. A different proposal is to prolong the opening of the side vents down to the soil, thus fomenting the entrance of air at crop level.

Downloads

Download data is not yet available.

References

Bailey BJ, 2003. Screens stop insects but slow airflow. Fruit Veg Technol 3: 6-8.

Bot GPA, 1983. Greenhouse climate: From physical processes to a dynamic model. Doctoral thesis. Agr Univ Wageningen, Wageningen, The Netherlands.

Boulard T, Baille A, 1995. Modelling of air exchange rate in a greenhouse equipped with continuous roof vents. J Agr Eng Res 61(1): 37-48.
http://dx.doi.org/10.1006/jaer.1995.1028

Boulard T, Meneses JF, Mermier M, Papadakis G, 1996. The mechanisms involved in the natural ventilation of greenhouses. Agr Forest Meteorol 79: 61-77.
http://dx.doi.org/10.1016/0168-1923(95)02266-X

Boulard T, Feuilloley P, Kittas C, 1997. Natural ventilation performance of six greenhouse and tunnel types. J Agr Eng Res 67(4): 249-266.
http://dx.doi.org/10.1006/jaer.1997.0167

Boulard T, Haxaire R, Lamrani MA, Roy JC, Jaffrin A, 1999. Characterization and modelling of the air fluxes induced by natural ventilation in a greenhouse. J Agr Eng Res 74: 135-144.
http://dx.doi.org/10.1006/jaer.1999.0442

Boulard T, Wang S, Haxaire R, 2000. Mean and turbulent air flows and microclimatic patterns in an empty greenhouse tunnel. Agr Forest Meteorol 100: 169-181.
http://dx.doi.org/10.1016/S0168-1923(99)00136-7

Bruce JM, 1978. Natural convection through openings and its applications to cattle building ventilation. J Agr Eng Res 23(2): 151-167.
http://dx.doi.org/10.1016/0021-8634(78)90046-X

Bruce JM, 1982. Ventilation of a model livestock building by thermal buoyancy. T ASAE 25(6): 1724-1726.

Businger JA, 1963. The glasshouse (greenhouse) climate. In Physics of plant environment. Ed. van Wijk, North-Holland Publ. Co., Amsterdam. pp: 277-318.

Fang F, 1997. A design method for contractions with square end sections. T ASME 119: 454-458.

Fatnassi H, Boulard T, Demrati H, Bouirden L, Sappe G, 2002. Ventilation performance of a large Canarian-type greenhouse equipped with insect-proof nets. Biosyst Eng 82(1): 97-105.
http://dx.doi.org/10.1006/bioe.2001.0056

Kacira M, 1996. Modeling dynamic air exchanges for naturally ventilated sawtooth greenhouse designs. Doctoral thesis. Ohio Stat Univ, Wooster, OH, USA.

Kittas C, Boulard T, Mermier M, Papadakis G, 1996. Wind induced air exchange rates in a greenhouse tunnel with continuous side openings. J Agr Eng Res 65(1): 37-49.
http://dx.doi.org/10.1006/jaer.1996.0078

Kittas C, Boulard T, Papadakis G, 1997. Natural ventilation of a greenhouse with ridge and side openings: sensitivity to temperature and wind effects. T ASAE 40(2): 415-425.

Kittas C, Katsoulas N, Bartzanas T, Mermier M, Boulard T, 2008. The impact of insect screens and ventilation openings on the greenhouse microclimate. T ASABE 51(6): 2151-2165.

Li Y, Delsante A, 2001. Natural ventilation induced by combined wind and thermal forces. Build Environ 36: 59-71.
http://dx.doi.org/10.1016/S0360-1323(99)00070-0

Lpez A, Valera DL, Molina-Aiz FD, 2011. Sonic anemometry to measure natural ventilation in greenhouses. Sensors 11: 9820-9838.
http://dx.doi.org/10.3390/s111009820
PMid:22163728 PMCid:3231258

Mistriosis A, Bot GPA, Picuno P, Scarascia-Mugnozza G, 1997. Analysis of the efficiency of greenhouse ventilation using computational fluid dynamics. Agr Forest Meteorol 85: 217-228.
http://dx.doi.org/10.1016/S0168-1923(96)02400-8

Molina-Aiz FD, Valera DL, Pea AA, Gil JA, Lpez A, 2009. A study of natural ventilation in an Almera-type greenhouse with insect screens by means of tri-sonic anemometry. Biosyst Eng 104: 224-242.
http://dx.doi.org/10.1016/j.biosystemseng.2009.06.013

Molina-Aiz FD, Fatnassi H, Boulard T, Roy JC, Valera DL, 2010. Comparison of finite element and finite volume methods for simulation of natural ventilation in greenhouses. Comput Electr Agr 72: 6986.
http://dx.doi.org/10.1016/j.compag.2010.03.002

Molina-Aiz FD, Valera DL, Lpez A, 2011. Airflow at the openings of a naturally ventilated Almera-type greenhouse with insect-proof screens. Acta Hort 893: 545-552.

Morris LG, Neale FE, 1954. The infra-red carbon dioxide gas analyser and its use in glasshouse research. Nat Inst Agr Eng. Tech Memo No. 99, Silsoe, UK, 13 pp.

Norton T, Sun D, Grant J, Fallon R, Dodd V, 2007. Applications of computational fluid dynamics (CFD) in the modelling and design of ventilation systems in the agricultural industry: a review. Bioresour Technol 98: 2386-2414.
http://dx.doi.org/10.1016/j.biortech.2006.11.025
PMid:17207996

Okushima L, Sase S, Nara M, 1989. A support system for natural ventilation design of greenhouses based on computacional aerodynamics. Acta Hort 284: 129-136.

Papadakis G, Mermier M, Meneses JF, Boulard T, 1996. Measurement and analysis of air exchange rates in a greenhouse with continuous roof and side openings. J Agr Eng Res 63: 219-228.
http://dx.doi.org/10.1006/jaer.1996.0023

Sase S, Takakura T, Nara M, 1984. Wind tunnel testing on airflow and temperature distribution of a naturally ventilated greenhouse. Acta Hort 148: 329-336.

Shilo E, Teitel M, Mahrer Y, Boulard T, 2004. Air-flow patterns and heat fluxes in roof-ventilated multi-span greenhouse with insect-proof screens. Agr Forest Meteorol 122: 3-20.
http://dx.doi.org/10.1016/j.agrformet.2003.09.007

Tanny J, Haslavsky V, Teitel M, 2008. Airflow and heat flux through the vertical opening of buoyancy-induced naturally ventilated enclosures. Energ Building 40: 637-646.
http://dx.doi.org/10.1016/j.enbuild.2007.04.020

Teitel M, Liran O, Tanny J, Barak M, 2008. Wind driven ventilation of a mono-span greenhouse with a rose crop and continuous screened side vents and its effect on flow patterns and microclimate. Biosyst Eng 101(1): 111-122.
http://dx.doi.org/10.1016/j.biosystemseng.2008.05.012

Valera DL, lvarez AJ, Molina FD, 2006. Aerodynamic analysis of several insect-proof screens used in greenhouses. Span J Agric Res 4(4): 273-279.

Van Buggenhout S, Van Brecht A, Eren zcan S, Vranken E, Van Malcot W, Berckmans D, 2009. Influence of sampling positions on accuracy of tracer gas measurements in ventilated spaces. Biosyst Eng 104: 216-223.
http://dx.doi.org/10.1016/j.biosystemseng.2009.04.018

Wang S, Deltour J, 1999. Lee-side ventilation-induced air movement in a large-scale multi-span greenhouse. J Agr Eng Res 74: 103-110.
http://dx.doi.org/10.1006/jaer.1999.0441

Published
2012-06-07
How to Cite
López, A., Valera, D. L., Molina-Aiz, F. D., & Peña, A. (2012). Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouses. Spanish Journal of Agricultural Research, 10(3), 631-642. https://doi.org/10.5424/sjar/2012103-660-11
Section
Agricultural engineering