Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems

  • M. C. Montero-Calasanz IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
  • C. Santamaría IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
  • M. Albareda IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
  • A. Daza IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
  • J. Duan Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1
  • B. R. Glick Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1
  • M. Camacho IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
Keywords: IBA, nursery, organic agriculture, plant growth promoting rhizobacteria (PGPR)

Abstract

Southern Spain is the largest olive oil producer region in the world. In recent years organic agriculture systems have grown exponentially so that new alternative systems to produce organic olive cuttings are needed. Several bacterial isolates, namely Pantoea sp. AG9, Chryseobacterium sp. AG13, Chryseobacterium sp. CT348, Pseudomonas sp. CT364 and Azospirillum brasilense Cd (ATCC 29729), have been used to induce rooting in olive semi-hardwood cuttings of Arbequina, Hojiblanca and Picual cultivars of olive (Olea europea L). The first four strains were previously selected as auxin-producing bacteria and by their ability to promote rooting in model plants. They have been classified on the basis of their 16S rDNA gene sequence. The known auxin producer A. brasilense Cd strain has been used as a reference. The inoculation of olive cuttings was performed in two different ways: (i) by dipping cuttings in a liquid bacterial culture or (ii) by immersing them in a paste made of solid bacterial inoculant and sterile water. Under nursery conditions all of the tested bacterial strains were able to induce the rooting of olive cuttings to a similar or greater extent than the control cuttings treated with indole-3-butyric acid (IBA). The olive cultivars responded differently depending on the bacterial strain and the inoculation method. The strain that consistently gave the best results was Pantoea sp. AG9, the only one of the tested bacterial strains to express the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The results are also discussed in terms of potential commercial interest and nursery feasibility performance of these strains.

Downloads

Download data is not yet available.

Author Biography

M. C. Montero-Calasanz, IFAPA, Centro Las Torres - Tomejil. Carretera Sevilla-Cazalla, Km 12,200. Alcalá del Río, 41200
Research, IFAPA

References

Alexander DB, Zuberer DA, 1991. Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12: 39-45.
http://dx.doi.org/10.1007/BF00369386 

Barranco D, Trujillo I, Rallo L, 2005. Libro I. Elaiografia hispanica. In: Variedades de olivo en España (Rallo L, Barranco D, Caballero JM, Del Rio C, Martin A, Tous J, Trujillo I, eds). Junta de Andalucía, MAPA and Ediciones Mundi-Prensa. Madrid. 

Centeno A, Gomez Del Campo M, 2008. Effect of root-promoting products in the propagation of organic olive (Olea europaea L. cv. Cornicabra) nursery plants. Hortic Sci 43: 2066-2069. 

Chun J, Lee JH, Jung Y, Kim M, Kim S, Kim BK, Lim YW, 2007. EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57: 2259–2261.
http://dx.doi.org/10.1099/ijs.0.64915-0
PMid:17911292  

Citernesi AS, Vitagliano C, Giovanetti M, 1998. Plant growth and root system morphology of Olea europaea L. rooted cuttings as influenced by arbuscular mycorrhizas. S J Hort Sci Biotechnol 73: 647-654. 

Date RA, 2000. Inoculated legumes in cropping systems of the tropics. Field Crops Res 65: 123-136.
http://dx.doi.org/10.1016/S0378-4290(99)00082-9 

Daza A, Santamaría C, Rodríguez-Navarro DN, Camacho M, Orive R, Temprano F, 2000. Perlite as a carrier for bacterial inoculants. Soil Biol Biochem 32: 567-572.
http://dx.doi.org/10.1016/S0038-0717(99)00185-6 

Döbereiner J, 1980. Forage grasses and grain crops. In: Methods for evaluating biological nitrogen (Bergensen FJ, ed). John Wiley & Sons, NY. pp: 535-555. 

El-Khawas H, Adachi K, 1999. Identification and quantification of auxins in culture media of Azospirillum and Klebsiella and their effect on rice roots. Biol Fertil Soils 28: 377-381.
http://dx.doi.org/10.1007/s003740050507 

Glick BR, 1995. The enhancement of plant growth by free-living bacteria. Can J Microbiol 41: 109-117.
http://dx.doi.org/10.1139/m95-015 

Glick BR, 2010. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28: 367-374.
http://dx.doi.org/10.1016/j.biotechadv.2010.02.001
PMid:20149857  

Glick BR, Penrose DM, Li J, 1998. A model for the lowering of plant ethylene concentrations by plant-growth-promoting bacteria. J Theor Biol 190: 63-68.
http://dx.doi.org/10.1006/jtbi.1997.0532
PMid:9473391  

Glick BR, Todorovic B, Czarny J, Cheng Z, Duan J, McConkey B, 2007. Promotion of plant growth by bacterial ACC deaminase. Crit Rev Plant Sci 26: 227-242.
http://dx.doi.org/10.1080/07352680701572966 

Hall, TA, 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Sym Ser 41: 95-98. 

Holguin G, Glick BR, 2003. Transformation of Azospirillum brasilense Cd with ACC deaminase gene from Enterobacter cloacae UW4 fused to the Tetr gene promoter improves its fitness and plant growth promoting ability. Microbiol Ecol 46: 122-133.
http://dx.doi.org/10.1007/s00248-002-1036-x
PMid:12739073  

İsfendiyaroğlu M, Özeker E, Başer S, 2009. Rooting of 'Ayvalik' olive cuttings in different media. Span J Agric Res 7: 165-172. 

Juck D, Charles T, Whyte LG, Greer CW, 2000. Polyphase microbial community analysis of petroleum hydrocarbon-contaminated soils from two northen Canadian communities. FEMS Microbiol Eco 33: 241-249.
http://dx.doi.org/10.1111/j.1574-6941.2000.tb00746.x
PMid:11098075  

Kloepper JW, Schroth MN, 1978. Plant growth-promoting rhizobacteria in radish. Proc 4th Int Conf of Plant Pathogenic Bacteria. Gilbert-Clarey, Tours, France. pp: 879-882. 

Li Q, Saleh-Lakha S, Glick BR, 2005. The effect of native and ACC deaminase-containing Azospirillum brasilense Cd1843 on the rooting of carnation cuttings. Can J Microbiol 51: 511-514.
http://dx.doi.org/10.1139/w05-027
PMid:16121231  Loiret FG, Ortega E, Kleiner D, Ortega-Rodés P, Rodés R, Dong Z, 2004. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J Appl Microbiol 97: 504-511.
http://dx.doi.org/10.1111/j.1365-2672.2004.02329.x
PMid:15281930  

Mayak S, Tirosh T, Glick BR, 1999. Effect of wild-type and mutant plant growth promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18: 49–53.
http://dx.doi.org/10.1007/PL00007047
PMid:10552131  

Montero-Calasanz MC, Gamane G, Albareda M, Santamaría C, Daza A, Camacho M, 2006. Estudio de sistemas alternativos a la utilización de hormonas en el estaquillado de olivo ecológico. In: Agricultura ecológica: gestión sostenible del agua y calidad agroalimentaria. SEAE, Zaragoza. Cap 116, pp: 1-10. 

OJ, 2007. Directive 834/2007/EC of the Council of June 28. Official Journal of the European Union. L 189 20/07/2007.

 OJ, 2008. Directive 889/2008/EC of the Council of September 5. Official Journal of the European Union. L 250 18/09/2008. 

Patten CL, Glick BR, 2002. Role of Pseudomonas putida indolacetic acid in development of the host plant root system. Appl Environ Microbiol 68: 3795-3801.http://dx.doi.org/10.1128/AEM.68.8.3795-3801.2002
PMid:12147474 PMCid:124051 

Penrose DM, Glick BR, 2003. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118: 10-15.
http://dx.doi.org/10.1034/j.1399-3054.2003.00086.x
PMid:12702008  

Penrose DM, Moffat BA, Glick BR, 2001. Determination of 1-aminocycopropane-1-carboxylic acid (ACC) to asses the effects of ACC deaminase-containing bacteria on roots of canola seedlings. Can J Microbiol 47: 77-80.
http://dx.doi.org/10.1139/w00-128
PMid:15049453  

Pikovskaya RI, 1948. Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya 17: 362-370. 

Porras-Piedra A, Soriano ML, Porras-Soriano A, Fernández-Izquierdo G, 2005. Influence of arbuscular micorrizas on the growth rate of mist propagated olive plantlets. Span J Agric Res 3: 98–105. 

Pretty J, 2008. Agricultural sustainability: concepts, principles and evidence. Philos Trans R Soc Lond B Biol Sci 363: 447-465.
http://dx.doi.org/10.1098/rstb.2007.2163
PMid:17652074 PMCid:2610163 

Ramamoorthy V, Viswanathan R, Raguchander T, Prakasam V, Samiyappan R, 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot 20: 1-11.
http://dx.doi.org/10.1016/S0261-2194(00)00056-9 

Rashid S, Charles TC, Glick BR, 2012. Isolation and characterization of new plant growth- promoting bacterial endophytes. App Soil Ecol 61: 217-224.
http://dx.doi.org/10.1016/j.apsoil.2011.09.011 

Rigaud, J, Puppo, A, 1975. Indole-3-acetic-acid catalism by soybean bacteroids. J Gen Microbiol 88: 223-228.
http://dx.doi.org/10.1099/00221287-88-2-223 

Shaharoona B, Arshad M, Zahir ZA, 2006. Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42: 155-159.
http://dx.doi.org/10.1111/j.1472-765X.2005.01827.x
PMid:16441381  

Soriano-Martínez ML, Azcón R, Barea JM, Porras-Soriano A, Marcilla Goldaracena I, Porras-Piedra A, 2006. Reduction of the juvenile period of new olive plantations through the early application of mycorrhizal fungi. Soil Sci 171: 52-58.
http://dx.doi.org/10.1097/01.ss.0000187348.31987.b6 

Spaepen S, Vanderleyden J, Remans R, 2007. Indole-3-acetic acid in microbial and microorganism-plant signalling. FEMS Microbiol Rev 31: 425-448.
http://dx.doi.org/10.1111/j.1574-6976.2007.00072.x
PMid:17509086  

Suarez MP, Lopez EP, Ordovas J, Perez I, Aguirre I, 2002. Utilización de distintos productos para mejorar el enraizamiento en estaquillado semileñosos de olivo. In: La olivicultura ecológica en España (Gonzalvez V, Muñoz R, eds). Mercadotecnia Grupo El Olivo, Ubeda, Spain. pp: 99-103. 

Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Lurie S, Szegedi E, Glick BR, Chernin L, 2010. Inhibitory effect of ACC deaminasa-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59: 1023-1030.
http://dx.doi.org/10.1111/j.1365-3059.2010.02326.x 

Van Loon LC, Bakker PAHM, Pieterse CMJ, 1998. Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36: 453-483.
http://dx.doi.org/10.1146/annurev.phyto.36.1.453
PMid:15012509 

Voelcker JA, 1896. 'Nitragin' or the use of 'pure cultivation' bacteria for leguminous crops. J Royal Agron Soc 3rd Serv 7: 253-264.

Published
2013-01-30
How to Cite
Montero-Calasanz, M. C., Santamaría, C., Albareda, M., Daza, A., Duan, J., Glick, B. R., & Camacho, M. (2013). Alternative rooting induction of semi-hardwood olive cuttings by several auxin-producing bacteria for organic agriculture systems. Spanish Journal of Agricultural Research, 11(1), 146-154. https://doi.org/10.5424/sjar/2013111-2686
Section
Plant production (Field and horticultural crops)