Epidemiology of Citrus tristeza virus in nursery blocks of Citrus macrophylla and evaluation of control measures

  • E. Vidal Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
  • A. Moreno Departamento de Protección Vegetal, Instituto de Ciencias Agrarias-CSIC, c/ Serrano 115 dpo, 28006 Madrid
  • E. Bertolini Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
  • M. C. Martínez Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
  • A. R. Corrales Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
  • M. Cambra Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Keywords: alemow, horticultural mineral oil treatments, physical barriers, semi-persistent virus, squash real-time RT-PCR, tissue print-ELISA, vector intensity

Abstract

The control of Citrus tristeza virus (CTV), the causal agent of tristeza disease, is essential to guarantee a productive citrus industry. The specific features of a nursery block make the control of the natural spread of viruses transmitted by vectors more difficult. Thus, the knowledge of the epidemiology of CTV in nursery blocks is basic to the design control strategies of the disease. Two experimental nursery plots of alemow (Citrus macrophylla) were planted in open field in Moncada (Valencia, Spain) (with a high CTV prevalence, 85%), and in Alcanar (Tarragona, Spain) with 700 and 843 nursery plants, respectively. The plants were analysed by tissue print-ELISA using 3DF1 and 3CA5 CTV-specific monoclonal antibodies. The CTV prevalence estimated after one year of cultivation in both plots was of 24.37% and 3.91%, respectively. At the same time, a commercial nursery plot grown under plastic-net covers established in Alcanar with 1,200 plants was also analysed as above, being the CTV prevalence estimated of 0.00%. The aphid activity present in the nursery plots was monitored. Aphis spiraecola was the most abundant aphid species visiting the plants in the nursery plots grown in the open field, whereas the aphid activity registered in the plants grown under the plastic-net covers was practically zero. The percentage of individual aphids carrying CTV PCR-amplifiable targets detected by squash real-time RT-PCR in the open-field nursery plots was 17.5% in Moncada and 1.67% in Alcanar. No significant differences in the CTV prevalence between treated and non-treated plants with horticultural mineral oils were found in the area with the high CTV-inoculum pressure.

Downloads

Download data is not yet available.

Author Biographies

E. Vidal, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Centro de Protección Vegetal y Biotecnología.
A. Moreno, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias-CSIC, c/ Serrano 115 dpo, 28006 Madrid
Departamento de Protección Vegetal
E. Bertolini, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Centro de Protección Vegetal y Biotecnología
M. C. Martínez, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Centro de Protección Vegetal y Biotecnología
A. R. Corrales, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Centro de Protección Vegetal y Biotecnología
M. Cambra, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Ctra. Moncada-Náquera km 4.5, 46113 Moncada, Valencia
Centro de Protección Vegetal y Biotecnología

References

Allen WR, Tehran B, Luft R, 1993. Effects of horticultural oil, insecticidal soap and film-forming products on western flower thrips and Tomato spotted wilt virus. Plant Dis 77: 915-918.
http://dx.doi.org/10.1094/PD-77-0915 

Asjes CJ, Blom-Barnhoorn GJ, 2001. Control of aphid-vectored and thrips-borne virus spread in lily, tulip, iris and dahlia by sprays of mineral oil, polydimethylsiloxane and pyrethroid insecticide in the field. Ann Appl Biol 139: 11-19.
http://dx.doi.org/10.1111/j.1744-7348.2001.tb00125.x 

Avinent L, Hermoso de Mendoza A, Llácer G, 1993. Comparison of traps for capture of alate aphids (Homoptera, Aphidinea) in apricot tree orchards. Agronomie 11: 613-618.
http://dx.doi.org/10.1051/agro:19910709 

Bertolini E, Moreno A, Capote N, Olmos A, de Luis A, Vidal E, Pérez-Panadés J, Cambra M, 2008. Quantitative detection of Citrus tristeza virus in plant tissues and single aphids by real-time RT-PCR. Eur J Plant Pathol 120: 177-188.
http://dx.doi.org/10.1007/s10658-007-9206-9 

Bruessow F, Asins MJ, Jacas JA, Urbaneja A, 2010. Replacement of CTV-susceptible sour orange rootstock by CTV-tolerant ones may have triggered outbreaks of Tetranychus urticae in Spanish citrus. Agric Ecol Environ 137: 93-98.
http://dx.doi.org/10.1016/j.agee.2010.01.005 

Cambra M, Bertoloni E, Olmos A, Capote N, 2006. Molecular methods for detection and quantification of virus in aphids. In: Virus diseases and crop biosecurity (Cooper I, Kuhne T, Polischuk V, eds.). Springer, Dordrecht, The Netherlands. pp: 81-88.
http://dx.doi.org/10.1007/978-1-4020-5298-9_7 

Cambra M, Gorris MT, Marroquín C, Román MP, Olmos A, Martínez MC, Hermoso de Mendoza A, López A, Navarro L, 2000a. Incidence and epidemiology of Citrus tristeza virus in the Valencia Community of Spain. Virus Res 71: 75-85.
http://dx.doi.org/10.1016/S0168-1702(00)00190-8 

Cambra M, Gorris MT, Román MP, Terrada E, Garnsey SM, Camarasa E, Olmos A, Colomer M, 2000b. Routine detection of Citrus tristeza virus by direct immunoprinting-ELISA method using specific monoclonal and recombinant antibodies. Proc. 14th Conf Int Org of Citrus Virologists (da Graça JV, Lee RF, Yokomi RK, eds). IOCV, Riverside, USA. pp: 34-41. 

Cambra M, Martínez MC, Marroquín C, Gorris MT, Trenor I, Zaragoza S, López A, Olmos A, Hermoso de Mendoza A, 2002. Epidemiology of Citrus tristeza virus (CTV) in citrus varieties cultivated under plastic net covers. Proc. 15th Conf Int Org of Citrus Virologists (Durán-Vila N, Milne RG, da Graça JV, eds). IOCV, Riverside, USA. pp: 337-340.

 

EPPO, 2004. Diagnostic protocol for regulated pests. Citrus tristeza virus. EPPO Bulletin 34: 239-246.
http://dx.doi.org/10.1111/j.1365-2338.2004.00725.x 

Fereres A, Moreno A, 2011. Integrated control measures against viruses and their vectors. In: Recent advances in plant virology (Caranta C, Aranda MA, Tepfer M, López-Moya JJ, eds). Caister Academic Press, Norflok, UK. pp: 237-262. 

Furness GO, Combellack JH, 2002. Spray application: review of opportunities and challenges for spray oils. In: Spray oils beyond 2000 (Beattie GAC, Watson DM, Stevens ML, Rae DJ, Spooner-Hart RN, eds). Univ Western Sydney, New South Wales, Australia. pp: 564-581. 

Gibson RW, Rice AD, 1989. Modifying aphid behavior. In: Aphids: their biology, natural enemies and control (Minks AK, Harewijn P, eds), Elsevier, Amsterdam, Netherlands. pp: 209-224. 

Gottwald TR, Cambra M, Moreno P, Camarasa E, Piquer J, 1996. Spacial and temporal analyses of Citrus tristeza virus in Eastern Spain. Phytopathology 86: 45-55.
http://dx.doi.org/10.1094/Phyto-86-45 

Hermoso de Mendoza A, Ballester-Olmos JF, Pina JA, 1984. Transmission of Citrus tristeza virus by aphids (Homoptera, Aphididae) in Spain. Proc 9th Conf Int Org of Citrus Virologists (Garnsey SM, Timmer LW, Dodds JA, eds). IOCV, Riverside, USA. pp: 23-27. 

Hermoso de Mendoza A, Ballester-Olmos JF, Pina JA, 1988. Comparative aphid transmission of a common Citrus tristeza virus isolate and a seedling yellows isolate recently introduced into Spain. Proc 9th Conf Int Org of Citrus Virologists (Timmer LW, Garnsey SM, Navarro L, eds). IOCV, Riverside, USA. pp: 68-70. 

Hermoso de Mendoza A, Pérez E, Real V, 1997. Composición y evolución de la fauna afídica (Homoptera, Aphidinea) de los cítricos valencianos. Bol San Veg-Plagas 23: 363-375 [In Spanish]. 

Hermoso de Mendoza A, Pérez E, Carbonell EA, Real V, 1998. Sampling methods to establish percentages of species and population patterns in citrus aphids. In: Aphids in natural and managed ecosystems (Nieto Nafría JM, Dixon AFG, ed), Univ de León, León, Spain. pp: 561-568. 

Irwin ME, Ruesink WG, 1986. Vector intensity: a product of propensity and activity. In: Plant virus epidemics: Monitoring, modelling and predicting outbreaks (Mc Lean GD, Garrett RG, Ruesink WG, ed), Academic Press, Sydney, Australia. pp: 13-33. 

Levy Y, Lifshitz J, 1995. Alemow (Citrus macrophylla Wester), compared with six other rootstocks for nucellar "Minneola" tangelo (Citrus paradisi Macf. × Citrus reticulata Blanco). Sci Hort 61, 131-137.
http://dx.doi.org/10.1016/0304-4238(94)00735-X 

López-Moya JJ, Cubero J, López-Abella D, Díaz-Ruíz JR, 1992. Detection of Cauliflower mosaic virus (CaMV) in single aphids by the polymerase chain reaction (PCR). J Virol Methods 37: 129-138
http://dx.doi.org/10.1016/0166-0934(92)90040-K 

Marroquín C, Olmos A, Gorris MT, Bertolini E, Martinez MC, Carbonell EA, Hermoso de Mendoza A, Cambra M, 2004. Estimation of the number of aphids carrying Citrus tristeza virus that visit adult citrus trees. Virus Res 100: 101-108.
http://dx.doi.org/10.1016/j.virusres.2003.12.018
PMid:15036840  

Molenberghs G, Verbeke G, 2005. Models for discrete longitudinal data. Springer, NY, 687 pp. 

Moreno A, Bertolini E, Olmos A, Cambra M, Fereres A, 2007. Estimation of vector propensity for Lettuce mosaic virus based on viral detection in single aphids. Span J Agric Res 5: 376-384. 

Moreno P, Ambrós S, Martí-Albiach MR, Guerri J, Peña L, 2008. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. Mol Plant Pathol 9: 251-268.
http://dx.doi.org/10.1111/j.1364-3703.2007.00455.x
PMid:18705856  

Olmos A, Cambra M, Esteban O, Gorris MT, Terrada E, 1999. New device and method for capture, reverse transcription and nested PCR in a single closed tube. Nucleic Acids Res 27: 1564-1565.
http://dx.doi.org/10.1093/nar/27.6.1564
PMid:10037824 PMCid:148356 

Parker WE, Howard JJ, Foster SP, Denholm I, 2006. The effect of insecticide application sequences on the control and insecticide resistance status of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididae), on field crops of potato. Pest Manag Sci 62: 307-315.
http://dx.doi.org/10.1002/ps.1162
PMid:16470680  

Perring TM, Gruenhagen TM, Farrar CA, 1999. Management of plant viral diseases through chemical control of insect. Annu Rev Entomol 44: 457-481.
http://dx.doi.org/10.1146/annurev.ento.44.1.457
PMid:15012379  

Piquer J, Pina JA, Pérez-Panadés J, Carbonell EA, Guerri J, Moreno P, 2005. Preliminary evaluation of the sensitivity of alemow rootstock to Citrus tristeza virus in Spain. Proc 16th Conf Int Org of Citrus Virologists (Hilf ME, Duran-Vila N, Rocha-Peña MA, eds). IOCV, Riverside, USA. pp: 94-100. 

Powell CA, Pelosi RR, Bullock RC, 1997. Natural field spread of mild and severe isolates of Citrus tristeza virus in Florida. Plant Dis 81: 18-20.
http://dx.doi.org/10.1094/PDIS.1997.81.1.18 

Robert Y, Woodford JA, Ducray-Bourdin DG, 2000. Some epidemiological approaches to the control of aphid-borne virus diseases in seed potato crops in northern Europe. Virus Res 71: 33-47.
http://dx.doi.org/10.1016/S0168-1702(00)00186-6 

Rodríguez A, Gorris MT, Serra J, Román MP, Collado C, Hermoso de Mendoza A, Cambra M, 2005. Estimation of the number of Citrus tristeza virus-viruliferous aphids landing on individual citrus seedlings and viral incidence in different citrus rootstocks in Spain. In: Proc. 16th Conf Int Org of Citrus Virologists (Hilf ME, Duran-Vila N, Rocha-Peña MA, eds). IOCV, Riverside, USA. pp: 399-403. 

Simons JN, Zitter TA, 1980. Use of oils to control aphid-borne viruses. Plant Dis 64: 542-546.
http://dx.doi.org/10.1094/PD-64-542 

Terrada E, Kerschbaumer RJ, Giunta G, Galeffi P, Himmler G, Cambra M, 2000. Fully "Recombinant enzyme-linked immunosorbent assays" using genetically engineered single-chain antibody fusion proteins for detection of Citrus tristeza virus. Phytopathology 90: 1337-1344.
http://dx.doi.org/10.1094/PHYTO.2000.90.12.1337
PMid:18943374  

Umesh KC, Valencia J, Hurley C, Gubler WD, Falk BW, 1995. Stylet oil provides limited control of aphid-transmitted viruses in melons. Calif Agri 49(3): 22-24.
http://dx.doi.org/10.3733/ca.v049n03p22 

Vela C, Cambra M, Cortés E, Moreno P, Miguet J, Pérez de San Román C, Sanz A, 1986. Production and characterization of monoclonal antibodies specific for Citrus tristeza virus and their use for diagnosis. J Gen Virol 67: 91-96.
http://dx.doi.org/10.1099/0022-1317-67-1-91 

Vidal E, Moreno A, Bertolini E, Pérez-Panadés J, Carbonell EA, Cambra M, 2010. Susceptibility of Prunus rootstocks to natural infection of Plum pox virus and effect of mineral oil treatments. Ann Appl Biol 157: 447-457.
http://dx.doi.org/10.1111/j.1744-7348.2010.00436.x 

Vidal E, Yokomi RK, Moreno A, Bertolini E, Cambra M, 2012. Calculation of diagnostic parameters of advanced serological and molecular tissue-print methods for detection of Citrus tristeza virus: A model for other plant pathogens. Phytopathology 102: 114-121.
http://dx.doi.org/10.1094/PHYTO-05-11-0139
PMid:21879789  

Yokomi RK, DeBorde RL, 2005. Incidence, transmissibility and genotype analysis of Citrus tristeza virus (CTV) isolates from CTV eradicative and noneradicative districts in central California. Plant Dis 89: 859-866.
http://dx.doi.org/10.1094/PD-89-0859 

Yokomi RK, Garnsey SM, 1987. Transmission of Citrus tristeza virus by Aphis gossypii and Aphis citricola in Florida. Phytophylac 19: 169-172. 

Yokomi RK, Lastra R, Stoetzel MB, Damsteegt VD, Lee RF, Garnsey SM, Gottwald TR, Rocha-Peña MA, Niblett CL, 1994. Establishment of the brown citrus aphid (Homoptera, Aphididae) in Central-America and the Caribbean Basin and transmission of Citrus tristeza virus. J Econ Entomol 87: 1078-1085.

Published
2012-11-12
How to Cite
Vidal, E., Moreno, A., Bertolini, E., Martínez, M. C., Corrales, A. R., & Cambra, M. (2012). Epidemiology of Citrus tristeza virus in nursery blocks of Citrus macrophylla and evaluation of control measures. Spanish Journal of Agricultural Research, 10(4), 1107-1116. https://doi.org/10.5424/sjar/2012104-2813
Section
Plant protection