Short communication. An improved intersubspecific genetic map in Lens including functional markers

  • R. de la Puente Área de Genética, Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24071 León
  • P. García Área de Genética, Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24071 León
  • C. Polanco Área de Genética, Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24071 León
  • M. Pérez de la Vega Área de Genética, Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24071 León
Keywords: Lens culinaris, Lens orientalis, lentil, linkage map, TFL1

Abstract

A previous Lens genetic map was improved by adding 31 molecular genetic markers, reaching a total of 190 markers with undistorted segregation. Data were obtained from the segregational analysis of 113 F2 plants generated from a single hybrid of Lens culinaris ssp. culinaris × L. c. ssp. orientalis. The added markers are predominantly codominant (15 SSRs, five CAPSs, four presence-absence polymorphisms, three length polymorphisms, two RAPDs, and two SRAPs). At a LOD score of 3.0, the 190 markers were grouped into eight linkage groups (LG) covering 2,234.4 cM, with an average distance between markers of 12.28 cM. This linkage map has reduced the numbers of linkage groups from ten in the previous map to eight. Most of the added markers must be functional markers since primers were mostly designed to amplify transcribed sequences. Some of the amplicons were sequenced to test if they were functional markers. One of the sequences showed homology with the Pisum TFL1a gene, involved in the transition from vegetative to flowering stages. This lentil gene was located in the LG 1 thanks to the presence of a polymorphic microsatellite in the first intron of the gene. Since L. culinaris ssp. orientalis is the primary source of additional genetic variability for lentil, this improved map could help in the use of such variability in lentil breeding programs.

Downloads

Download data is not yet available.

References

Budak H, Shearman RC, Parmaksiz I, Gaussoin RE, Riordan TP, Dweikat I, 2004. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theor Appl Genet 108: 328-334.
http://dx.doi.org/10.1007/s00122-003-1428-4
PMid:13679978 

Durán Y, Fratini R, García P, Pérez de la Vega M, 2004. An intersubspecific genetic map of Lens. Theor Appl Genet 108: 1265-1273.
http://dx.doi.org/10.1007/s00122-003-1542-3
PMid:14676948  

Ellwood SR, Phan HTT, Jordan M, Hane J, Torres AM, Avila CM, Cruz-Izquierdo S, Oliver RP, 2008. Construction of a comparative genetic map in faba bean (Vicia faba L.); conservation of genome structure with Lens culinaris. BMC Genomics 9: 380-391.
http://dx.doi.org/10.1186/1471-2164-9-380
PMid:18691425 PMCid:2533332 

Eujayl I, Baum M, Erskine W, Pehu E, Muehlbauer FJ, 1997. The use of RAPD markers for lentil genetic mapping and the evaluation of distorted F2 segregation. Euphytica 96: 405–412.
http://dx.doi.org/10.1023/A:1003045000568 

Eujayl I, Baum M, Powell W, Erskine W, Pehu E, 1998. A genetic linkage map of lentil (Lens sp.) based on RAPD and AFLP markers using recombinant inbred lines. Theor Appl Genet 97: 83–89.
http://dx.doi.org/10.1007/s001220050869 

Fayyaz E, Shahnejaat-Bushehri AA, Tabatabaei BES, Adel J, 2007. Constructing a preliminary wheat genetic map using RGA and AFLP markers. Int J Agr Biol 9: 863-867. 

Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C, 2003. DETERMINATE and LATE FLOWERING are two TERMINAL FLOWER1/CENTRORADIALIS homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15: 2742–2754.
http://dx.doi.org/10.1105/tpc.015701
PMid:14563931 PMCid:280576 

Fratini R, Ruiz ML, Pérez de la Vega M, 2004. Intra-specific and intersubspecific crossing in lentil (Lens culinaris Medik.). Can J Plant Sci 84: 981-986.
http://dx.doi.org/10.4141/P03-201 

Fratini R, Durán Y, García P, Pérez de la Vega M, 2007. Identification of quantitative trait loci (QTL) for plant structure, growth habit and yield in lentil. Span J Agric Res 5: 348-356. 

Gao L, Liu N, Huang B, Hu X 2008. Phylogenetic analysis and genetic mapping of Chinese Hedychium using SRAP markers. Sci Hortic 117: 369-377.
http://dx.doi.org/10.1016/j.scienta.2008.05.016 

Hamwieh A, Udapa SM, Choumane W, Sarker A, Dreyer F, Jung C, Baum M, 2005. A genetic linkage map of lentil based on microsatellite and AFLP markers and localization of fusarium vascular wilt resistance. Theor Appl Genet 110: 669–677.
http://dx.doi.org/10.1007/s00122-004-1892-5
PMid:15650814  

Hamwieh A, Udupa SM, Sarker A, Jung C, Baum M, 2009. Development of new microsatellite markers and their application in the analysis of genetic diversity in lentils. Breed Sci 59: 77–86.
http://dx.doi.org/10.1270/jsbbs.59.77 

Havey MJ, Muehlbauer FJ, 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor Appl Genet 77: 395–401.
http://dx.doi.org/10.1007/BF00305835 

Jones DT, Taylor WR, Thornton JM, 1992. The rapid generation of mutation data matrices from protein sequences. Comp Appl Biosci 8: 275-282.
PMid:1633570  

Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L, 1987. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1: 174-181.
http://dx.doi.org/10.1016/0888-7543(87)90010-3 

Li G, Quiros CF, 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor Appl Genet 103: 455-461.
http://dx.doi.org/10.1007/s001220100570 

Pérez de la Vega M, Fratini R, Muehlbauer FJ, 2011. Lentil. In: Genetics, genomics and breeding of cool season grain legumes (Pérez de la Vega M, Torres AM, Cubero JI, Kole C, eds). Science Publishers- CRC Press, Enfield, CT, USA, pp: 98-150. 

Phan HTT, Ellwood SR, Hane JK, Ford R, Materne M, Oliver RP, 2007. Extensive macrosynteny between Medicago truncatula and Lens culinaris ssp. culinaris. Theor Appl Genet 114: 549-558.
http://dx.doi.org/10.1007/s00122-006-0455-3
PMid:17119911  

Reddy MRK, Rathour R, Kumar N, Katoch P, Sharma TR, 2010. Cross-genera legume SSR markers for analysis of genetic diversity in Lens species. Plant Breed 129: 514-518. 

Saha GC, Sarker A, Chen W, Vandemark GJ, Muehlbauer FJ, 2010. Inheritance and linkage map positions of genes conferring resistance to Stemphylium blight in lentil. Crop Sci 50: 1831-1839.
http://dx.doi.org/10.2135/cropsci2009.12.0709 

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S, 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739.
http://dx.doi.org/10.1093/molbev/msr121
PMid:21546353 PMCid:3203626 

Taran B, Buchwaldt L, Tullu A, Banniza S, Warkentin TD, Vandenberg A, 2003. Using molecular markers to pyramid genes for resistance to Ascochyta blight and anthracnose in lentil (Lens culinaris Medik.). Euphytica 134: 223-230.
http://dx.doi.org/10.1023/B:EUPH.0000003913.39616.fd

Published
2012-12-11
How to Cite
de la Puente, R., García, P., Polanco, C., & Pérez de la Vega, M. (2012). Short communication. An improved intersubspecific genetic map in Lens including functional markers. Spanish Journal of Agricultural Research, 11(1), 132-136. https://doi.org/10.5424/sjar/2013111-3283
Section
Plant breeding, genetics and genetic resources