Furrow-irrigated chufa crops in Valencia (Spain). II: Performance analysis and optimization

  • N. Pascual-Seva Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia
  • A. San Bautista Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia
  • S. Lopez-Galarza Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia
  • J. V. Maroto Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia
  • B. Pascual Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia
Keywords: vegetable crop, irrigation management, application efficiency, distribution uniformity, furrow inflow rate, cut-off time

Abstract

Chufa (Cyperus esculentus L. var. sativus Boeck.) is a traditional crop in the Mediterranean region of Spain, where it is only furrow irrigated. This article analyzes the irrigation performance for this crop, conducting field studies over three consecutive seasons in Valencia (Spain). Irrigation schedule was based on the volumetric soil water content, which was measured with capacitance sensors. Infiltrability was measured with blocked-furrow infiltrometers. An area velocity flow module measured the water flow, the cross-sectional geometry of furrows was determined using furrow profilometers, and times for advance and recession were recorded. WinSRFR software was used to analyze every irrigation event, determining the application efficiency (AE) and distribution uniformity of the minimum (DUmin), and to optimize the combination of furrow inflow (q) and cut-off time (Tco). Average values obtained for AE were 30.1%, 25.6%, and 26.7% in 2007, 2008, and 2009, respectively, and the corresponding DUmin values were 0.54, 0.61, and 0.67. Optimized results showed that it is possible to reach AE and DUmin values up to 87% and 0.86, respectively. However, understanding the q-Tco relationship that maximizes both AE and DUmin is more important than knowing the specific values. A function that related q and Tco was obtained for the typical plot dimensions, and this was validated in 2011. Therefore, this function can be used in most of the plots in the cultivation area.

Downloads

Download data is not yet available.

Author Biographies

N. Pascual-Seva, Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia

Departamento de Producción Vegetal

A. San Bautista, Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia

Departamento de Producción Vegetal

S. Lopez-Galarza, Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia

Departamento de Producción Vegetal

J. V. Maroto, Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia

Departamento de Producción Vegetal

B. Pascual, Departamento de Producción Vegetal. Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia

Departamento de Producción Vegetal

Head of Department

References



ALARC, 2009. WinSRFR 3.1 User Manual. US Department of Agriculture - Agricultural Research Service – Arid Land Agricultural Research Center. Maricopa, AZ, USA. 188 pp. 

Ayers RS, Westcot DW, 1994. Water quality for agriculture. FAO Irrig Drain Paper No 29, FAO, Rome. 97 pp. 

Bautista E, Wallender WW, 1993. Identification of furrow intake parameters from advance times and rates. J Irrig Drain Eng 119: 295-311.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:2(295) 

Bautista E, Clemmens AJ, Strelkoff TS, Schlegel J, 2009a. Modern analysis of surface irrigation systems with WinSRFR. Agric Water Manage 96: 1146-1154.
http://dx.doi.org/10.1016/j.agwat.2009.03.007 

Bautista E, Clemmens AJ, Strelkoff TS, Niblack M, 2009b. Analysis of surface irrigation systems with WinSRFR-Example application. Agric Water Manage 96: 1162-1169.
http://dx.doi.org/10.1016/j.agwat.2009.03.009 

Bondurant JA, 1957. Developing furrow infiltrometer. Agric Eng 38: 602-604. 

Bos MG, 1980. Irrigation efficiencies at crop production level. International Commission on Irrigation and Drainage 29: 18-25. 

Burt CM, Clemmens AJ, Strelkoff TS, Solomon KH, Bliesner RD, Hardy LA, Howell TA, Eisenhauer DE, 1997. Irrigation performance measures; efficiency and uniformity. J Irrig Drain Eng 123: 423-442.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1997)123:6(423) 

Camacho E, Pérez C, Roldán J, Alcaide M, 1997. Modelo de manejo y control en tiempo real del riego por surcos. Ingeniería del agua 4(4): 11-18 [In Spanish].

 

Clemmens AJ, Bautista E, 2009. Toward physically based estimation of surface irrigation infiltration. J Irrig Drain Eng 135: 588-596.
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0000092 

Clemmens A, Walker WR, Fangmeier DD, Hardy LA, 2007. Design of surface systems. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 499-531. 

Elías F, Ruiz L, 1977. Agroclimatología de España. Cuadernos INIA nº 7, Madrid. 565 pp. [In Spanish].

 

Elliot RL, Walker WR, 1982. Field evaluation of furrow infiltration and advance functions. T ASAE 25: 396-400. 

Hart WE, Collins HG, Woodward G, Humpherys AS, 1980. Design and operation of gravity or surface systems. In: Design and operation of farm irrigation systems (Jensen ME, ed). ASAE, St. Joseph, MI, USA. pp: 499-579. 

Horst MG, Shamutalov SS, Pereira LS, Gonçalves JM, 2005. Field assesment of the water saving potential with furrow irrigation in Fergana, Aral Sea basin. Agric Water Manage 77: 210-231.
http://dx.doi.org/10.1016/j.agwat.2004.09.041 

Jurriëns M, Zerihun D, Boonstra J, Feyen J, 2001. SURDEV: Surface irrigation software. Design, operation and evaluation of basin, border and furrow irrigation. ILRI, Wageningen, Holland. 194 pp. 

Keller J, 1965. Effect of irrigation method on water conservation. J Irrig Drain Division 91(IR 2): 61-72.

 

Khatri KL, Smith RJ, 2006. Real-time prediction of soil infiltration characteristics for the management of furrow irrigation. Irrig Sci 25: 33-43.
http://dx.doi.org/10.1007/s00271-006-0032-1 

Kruse EG, Heermann DF, 1977. Implications of irrigation system efficiencies. J Soil Water Cons 32: 465-470. 

Lord JM, Ayars JE, 2007. Evaluating performance. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 791-803. 

Maheshwari BL, McMahon TA, 1993. Performance evaluation of border irrigation models for South-East Australia: Part 2, Overall suitability for field applications. J Agr Eng Res 54: 127-139.
http://dx.doi.org/10.1006/jaer.1993.1008 

Mateos L, Oyonarte NA, 2005. A spreadsheet model to evaluate sloping furrow irrigation accounting for infiltration variability. Agric Water Manage 76: 62-75.
http://dx.doi.org/10.1016/j.agwat.2005.01.013 

McClymont DJ, Smith RJ, Raine SR, 1999. An integrated numerical model for the design and management of furrow irrigation. Int Conf on Multi-Objective Decision Support Systems, Brisbane, Australia. 11 pp. 

Merriam JL, Keller J, 1978. Farm irrigation system evaluation: a guide for Management. Utah St. Univ, Logan, UT, USA. 271 pp.
PMCid:2110040 

Merriam JL, Shearer MN, Burt CM, 1980. Evaluating irrigation systems and practices In: Design and operation of farm irrigation systems (Jensen ME, ed). ASAE, St. Joseph, MI, USA. pp: 721-759. 

Neira XX, Álvarez CJ, Cuesta TS, Cancela JJ, 2005. Evaluation of water-use in traditional irrigation. An application to the Lemos Valley irrigation district, northwest of Spain. Agric Water Manage 75: 137-151.
http://dx.doi.org/10.1016/j.agwat.2004.12.007 

Oyonarte NA, Mateos L, Palomo MJ, 2002. Infiltration variability in furrow irrigation. J Irrig Drain Eng 128: 26-33.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2002)128:1(26) 

Pascual B, Maroto JV, López-Galarza S, Alagarda J, Castell Zeising V, 1997. El cultivo de la chufa (Cyperus esculentus L. var. sativus Boeck.). Estudios realizados. Generalitat Valenciana, Conselleria de Agricultura, Pesca y Alimentación, Valencia, Spain. 95 pp. [In Spanish]. 

Pascual-Seva N, 2011. Estudios agronómicos sobre el cultivo de la chufa (Cyperus esculentus L. var. sativus Boeck.): estrategias de riego, tipos de plantación, absorción de nutrienes, y análisis fitoquímico. Doctoral thesis. Univ Politècnica de València, Valencia, Spain. 353 pp. [In Spanish].

 

Pascual-Seva N, San Bautista A, López-Galarza S, Maroto JV, Pascual B, 2013. Furrow-irrigated chufa crops in Valencia (Spain). I: Productive response to two irrigation strategies. Span J Agric Res 11(1): 257-266.
http://dx.doi.org/10.5424/sjar/2013111-3385 

Pereira LS, Oweis T, Zairi A, 2002. Irrigation management under water scarcity. Agric Water Manag 57: 175-206.
http://dx.doi.org/10.1016/S0378-3774(02)00075-6 

Playán E, Mateos L, 2006. Modernization and optimization of irrigation systems to increase water productivity. Agric Water Manage 80: 100-116.
http://dx.doi.org/10.1016/j.agwat.2005.07.007 

Playán E, Slatni A, Castillo R, Faci JM, 2000. A case study for irrigation modernisation: II. Scenario analysis. Agric Water Manage 42: 335-354.
http://dx.doi.org/10.1016/S0378-3774(99)00051-7 

Schmitz GH, 1993. Transient infiltration from cavities. I: Theory. J Irrig Drain Eng 119: 443-457.
http://dx.doi.org/10.1061/(ASCE)0733-9437(1993)119:3(443) 

Simunek J, Sejna M, van Genuchten M Th, 1999. The HYDRUS-2D software package for simulating the two-dimensional movement of water, heat, and multiple solutes in variably-saturated media. US Salinity Laboratory, USDA, ARS, Riverside, CA, USA. 225 pp.

 

Smith RE, Warrick AW, 2007. Soil water relationships. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 120-159.
PMCid:2690923 

Smith RJ, Raine SR, Minkevich J, 2005. Irrigation application efficiency and deep drainage potential under surface irrigated cotton. Agric Water Manage 71: 117-130.
http://dx.doi.org/10.1016/j.agwat.2004.07.008 

Soil Survey Staff, 2010. Keys to soil taxonomy, 11th ed. USDA-NRCS, Washington DC, USA. 338 pp. 

Solomon KH, El-Gindy AM, Ibatullin SR, 2007. Planning and system selection. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 57-75. 

Strelkoff TS, Clemmens A J, 2007. Hydraulics of surface systems. In: Design and operation of farm irrigation systems (Hoffman GJ, Evans RG, Jensen ME, Martin DL, Elliot RL, eds). ASABE, St. Joseph, MI, USA. pp: 436-498. 

Tabuada MA, Rego ZJC, Vachaud G, Pereira LS, 1995. Modelling of furrow irrigation. Advance with two-dimensional infiltration. Agric Water Manage 28: 201-221.
http://dx.doi.org/10.1016/0378-3774(95)01177-K 

USDA-SCS, 1991a. Border irrigation. Section 15. National Engineering Handbook. US Department of Agriculture, Soil Conservation Service, Washington DC, USA. Chapter 4, 251 pp.

 

USDA-SCS, 1991b. Furrow irrigation. Section 15. National Engineering Handbook. US Department of Agriculture, Soil Conservation Service, Washington DC, USA. Chapter 5, 103 pp.

 

Veihmeyer FJ, Hendrickson AH, 1931. The moisture equivalent as a measure of the field capacity of soils. Soil Sci 32(3): 181-193.
http://dx.doi.org/10.1097/00010694-193109000-00003 

Walker WR, 1989. Guidelines for designing and evaluating surface irrigation systems. FAO Irrig Drain Paper No 45, FAO, Rome. 137 pp. 

Walker WR, 2003. SIRMOD III. Surface irrigation simulation, evaluation and design. Guide and technical documentation. Utah St. Univ, Logan, UT, USA. 138 pp. 

Walker WR, Skogerboe GV, 1987. Surface irrigation. Theory and practice. Prentice-Hall, Englewood Cliffs, NJ, USA. 386 pp. 

Wöhling Th, Schmitz GH, 2007. Physically based coupled model for simulating 1D surface-2D subsurface flow and plant water uptake in irrigation furrows. I: Model development. J Irrig Drain Eng 133: 538-540.
http://dx.doi.org/10.1061/(ASCE)0733-9437(2007)133:6(538)

Published
2013-01-09
How to Cite
Pascual-Seva, N., San Bautista, A., Lopez-Galarza, S., Maroto, J. V., & Pascual, B. (2013). Furrow-irrigated chufa crops in Valencia (Spain). II: Performance analysis and optimization. Spanish Journal of Agricultural Research, 11(1), 268-278. https://doi.org/10.5424/sjar/2013111-3384
Section
Water management

Most read articles by the same author(s)