Estimation of soil coverage of chopped pruning residues in olive orchards by image analysis

F. Jiménez-Jiménez, G. L. Blanco-Roldán, F. Márquez-García, S. Castro-García, J. Agüera-Vega

Abstract


Residue chopping from orchard pruning is becoming a common practice in conservation agriculture after the establishment of eco-conditionality policies in the European Union. This type of residue is used to protect the soil from erosion and improve the water balance and fertility of soils by improving the organic matter content. However, no studies have evaluated the influence of pruning residues and size on soil coverage. This study examines the effect of different treatments on pruning residue soil coverage in an olive orchard (cv. Picual). Treatments consisted of two quantities of pruning residues, specifically, high (2.04 kg m-2) and low (1.02 kg m-2), and two chopping speeds, low (2.4 km h-1) and high (3.2 km h-1). The different treatments were evaluated by image analysis and pixel counting to determine the soil cover percentage, size, number and distribution of the pruning residues after chopping. After chopping, the soil cover percentage was 39% higher in the high quantity pruning residue treatments but was not significantly influenced by the chopping speed. The size and number of lignified residues was quantified via pixel counting. In the high quantity pruning residue treatments, the number of large lignified residues (> 6 cm2) was higher, and the number of pruning residues smaller than 2 cm2 was lower, when compared with low quantity pruning residue treatments. The high chopping speed treatments produced more smaller-sized pruning residues.

Keywords


cover crop; soil management; spatial distribution; Olea europaea L.; blob analysis method

Full Text:

PDF

References


Agrela F, Gil JA, Giráldez JV, Ordó-ez R, González P, 2003. Obtention of reference value in the measurement of the cover fraction in conservation agriculture. Proc II World Cong on Conservation Agriculture (Cury B, Canalli LB, eds.), Iguazú, Brazil, pp: 44-47.

Calatrava J, Franco JA, 2011. Using pruning residues as mulch: Analysis of its adoption and process of diffusion in Southern Spain olive orchards. J Environ Manage 92: 620-62. http://dx.doi.org/10.1016/j.jenvman.2010.09.023 PMid:21051135

CAP, 2006. El olivar andaluz. Consejería de Agricultura y Pesca, Junta de Andalucía, Sevilla, Spain.

Cano-Montero EI, Mu-oz-Colomina CI, Urquia-Grande E, 2007. Agrienvironmental indicators in the management of farms. The Spanish case. Work document 2007-04, Facultad de Ciencias Económicas y Empresariales, Universidad Complutense de Madrid.

Clement J, Novas N, Gazquez J, Manzano-Agugliaro F, 2012. High speed intelligent classifier of tomatoes by colour, size and weight. Span J Agric Res 10(2): 314-325.

CTIC, 1990. National survey of conservation tillage practices. Conservation Tillage Information Center, Fort Wayne, IN, USA.

Daughtry CST, McMurtrey JE, Kim MS, Chappelle EW, 1997. Estimating crop residue cover by blue fluorescence imaging. Remote Sens Environ 60: 14-21. http://dx.doi.org/10.1016/S0034-4257(96)00118-6

Gée C, Bossu J, Jones G, Truchetet F, 2008. Crop/weed discrimination in perspective agronomic images. Comput Electron Agr 60(1): 49-59. http://dx.doi.org/10.1016/j.compag.2007.06.003

Gilley JE, Finkner SC., Spomer RG, Mielke LN, 1986. Runoff and erosion as affected by corn residue: Part I. Total losses. T ASABE 29: 157-160.

Hervás-Martínez C, Gutiérrez PA, Pe-a-Barragán JM, Jurado-Expósito M, López-Granados F, 2010. A logistic radial basis function regression method for discrimination of cover crops in olive orchards. Expert Syst Applic 37: 8432-8444. http://dx.doi.org/10.1016/j.eswa.2010.05.035

Hill J, Megier J, Mehl W, 1995. Land degradation, soil erosion, and desertification monitoring in Mediterranean ecosystems. Int J Remote Sens 12: 107-130.

Huang Y, Bruce LM, Koger T, Shaw D, 2001. Analysis of the effects of cover crop residue on hyperspectral reflectance discrimination of soybean and weeds via Haar transform. Geoscience and Remote Sensing Symposium. IGARSS '01. IEEE 2001 Int, 3: 1276-1278.

MAGRAMA, 2013. Encuesta de superficies y rendimientos. Ministerio de Agricultura, Alimentación y Medio Ambiente. Madrid. Available in: http://www.magrama.gob.es/es/estadistica/temas/novedades/Olivar2012_tcm7-262578.pdf [20 February 2013].

Meyer GE, Neto JC, 2008. Verification of color vegetation indices for automated crop imaging applications. Comput Electron Agr 63(2): 282-293. http://dx.doi.org/10.1016/j.compag.2008.03.009

Morrison JE, Huang C, Lightle DT, Daughtry CST, 1993. Residue cover measurement techniques. J. Soil Water Conserv 48: 479-483.

Olmstead MA, Wample R, Greene S. Tarara J, 2004. Nondestructive measurement of vegetative cover using digital image analysis. Hortscience 39(1): 55-59.

Pardini A, Faiello C, Longhi F, Mancuso S, Snowball R, 2002. Cover crop species and their management in vineyards and olive groves. Adv in Hortic Sci 16(3-4): 225-234.

Pastor M, 2008. Sistemas de manejo del suelo. In: El cultivo del olivo (Barranco D, Fernández-Escobar R, Rallo L, eds.). Coed. Junta de Andalucía-Mundi Prensa. pp: 239-295.

Pforte F, Wilhelm B, Hensel O, 2012. Evaluation of an online approach for determination of percentage residue cover. Biosyst Eng 112(2): 121-129. http://dx.doi.org/10.1016/j.biosystemseng.2012.03.005

Rasmussen J, Nørremark M, Bibby BM, 2007. Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res 47: 299-310. http://dx.doi.org/10.1111/j.1365-3180.2007.00565.x

Repullo MA, Carbonell R, Hidalgo J, Rodríguez-Lizana A, Ordó-ez R, 2012. Using olive pruning residues to cover soil and improve fertility. Soil Till Res 124: 36-46. http://dx.doi.org/10.1016/j.still.2012.04.003

Reyniers M, Vrindts E, De Baerdemaeker J, 2004. Optical measurement of crop cover for yield prediction of wheat. Biosyst Eng 89(4): 383-394. http://dx.doi.org/10.1016/j.biosystemseng.2004.09.003

Ribeiro A, Ranz J, Burgos-Artizzu X P, Pajares G, Sanchez del Arco M J, Navarrete L, 2011. An image segmentation based on a genetic algorithm for determining soil coverage by crop residues. Sensors 11: 6480-6492 http://dx.doi.org/10.3390/s110606480 PMid:22163966 PMCid:PMC3231416

Rodríguez-Lizana A, Espejo-Pérez AJ, González-Fernández P, Ordó-ez-Fernández R, 2008. Pruning residues as an alternative to traditional tillage to reduce erosion and pollutant dispersion in olive groves. Water Air Soil Pollut 193: 165-173. http://dx.doi.org/10.1007/s11270-008-9680-5

Ruano F, Campos M, Sánchez-Raya A J, Pe-a A, 2010. Olive trees protected from the olive bark beetle, Phloeotribus scarabaeoides (Bernard 1788) (Coleoptera, Curculionidae, Scolytinae) with a pyrethroid insecticide: Effect on the insect community of the olive grove. Chemosphere 80(1): 35-40. http://dx.doi.org/10.1016/j.chemosphere.2010.03.039 PMid:20413141

Schlesinger WH, 2000. Carbon sequestration in soils: Some cautions amidst optimism. Agr Ecosyst Environ 82: 121-127. http://dx.doi.org/10.1016/S0167-8809(00)00221-8

Snelder DJ, Bryan RB, 1995. The use of rainfall simulation tests to assess the influence of vegetation density on soil loss on degraded rangeland in the Baringo District, Kenya. Catena 25: 105-116. http://dx.doi.org/10.1016/0341-8162(95)00003-B

Soil Survey Staff, 1999. Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys. USDA Agr. Hdbk. 436, 2nd ed., Washington.

Thorbum PJ, Probert ME, Robertson FA, 2001. Modelling decomposition of sugar cane of surface residues with APSIM Residue. Field Crop Res 70: 223-232. http://dx.doi.org/10.1016/S0378-4290(01)00141-1

Velázquez-García J, Oleschko K, Mu-oz-Villalobos J A, Velásquez-Valle M, Martínez-Menes M, Parrot J, Korvin G, Cerca, M, 2010. Land cover monitoring by fractal analysis of digital images. Geoderma 160(1): 83-92. http://dx.doi.org/10.1016/j.geoderma.2009.11.014

Velázquez-Martí B, Fernández-González E, López-Cortés I, & Salazar-Hernández DM, 2011. Quantification of the residual biomass obtained from pruning of trees in Mediterranean olive groves. Biomass Bioenerg 35(7): 3208-3217. http://dx.doi.org/10.1016/j.biombioe.2011.04.042

Woebbecke DM, Meyer GE, Von Bargen K, Mortensen, DA, 1995. Color indices for weed identification under various soil, residue and lighting conditions. T ASAE 38: 259-269.




DOI: 10.5424/sjar/2013113-3742