Short communication. Efficiency of AFLP markers and seed storage protein electrophoresis to study the phylogeny of some Hordeum species

H. A. El Rabey, A. L. Al-Malki, K. O. Abulnaja, T. A. Kumosani, J. A. Khan

Abstract


This study is focused on reconstructing the phylogeny of 60 accessions representing ten species of the genus Hordeum based on amplified fragment length polymorphism (AFLP) markers and SDS-PAGE of seed storage proteins. We obtained 339 polymorphic AFLP bands and 46 polymorphic protein bands from the SDS-PAGE of water soluble and non-soluble seed storage proteins. The phylogenetic tree deduced from AFLP analysis is concordant with that deduced from seed storage proteins electrophoresis. The studied taxa were clustered according to their genome type into two main groups representing the Old and New World’s species. Inside each group the species were clustered according to their genome type. Highly significant cophenetic correlation coefficients obtained in both AFLPs (0.96) and seed storage proteins (0.89) indicate the reliability of the results. It can be concluded that both AFLP and SDS-PAGE are adequate techniques to study the Hordeum phylogeny.

Keywords


genome; dendrogram; monophyletic; Old World species; New World species

Full Text:

PDF

References


Baum BR, Bailey LG, 1991. Relationships among native and introduced North American species of Hordeum, based on chloroplast DNA restriction-site variation. Can J Bot 69: 2421-2426. http://dx.doi.org/10.1139/b91-300

Blattner F, 2009. Progress in phylogenetic analysis and a new infrageneric classification of the barley genus Hordeum (Poaceae: Triticeae). Breeding Sci 59(5): 471-480. http://dx.doi.org/10.1270/jsbbs.59.471

Bothmer R von, 1992. The gene pool of barley and preservation of wild species of Hordeum. IBPGR, Rome, Italy (5) pp: 32-35.

Bothmer R von, Jacobsen N, 1985. Origin, taxonomy and related species. In: Barley Monographs (Rasmussun D, ed.), pp: 19-56.

Bothmer R von, Komatsuda T, 2011. Barley origin and related species. In: Barley production, improvement and uses. Wiley-Blackwell Press, pp: 14-63.

Bothmer R von, Jacobsen N, Baden C, Jorgensen RB, Linde-Laursen I, 1995. An ecogeographical study of the genus Hordeum. 2nd edition IPGRI.

Bothmer R von, Flink J, Landström T 1986. Meiosis in interspecific Hordeum hybrids. I. Diploid combinations. Can J Genet Cytol 28: 525-535.

Bothmer R von, Flink J, Landström T, 1987. Meiosis in interspecific Hordeum hybrids. II. Triploid combinations. Evol Trends Plants 1: 41-50.

Bothmer R von, Sato K, Komatsuda T, Yasuda S, Fischbeck G, 2003. The domestication of cultivated barley. In: Diversity in barley (Hordeum vulgare) (von Bothmer R, van Hintum TH, Knupffer H & Sato K, eds), Elsevier Sci, Amsterdam. pp: 9-27.

Bustos de A, Cuadrado A, Soler C, Jouve N, 1996. Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chrom Res 4: 491-499. http://dx.doi.org/10.1007/BF02261776 PMid:8939360

Doebley J, Bothmer R von, Larson S, 1992. Chloroplast DNA variation and the phylogeny of Hordeum (Poaceae). Am J Bot 79: 576-584. http://dx.doi.org/10.2307/2444870

El Rabey H, Badr A, Schaefer-Pregl R, Martin W, Salamini F, 2002. Speciation and species separation in Hordeum L. (Poaceae) resolved by discontinuous molecular markers. Plant Biol 4: 1-9. http://dx.doi.org/10.1055/s-2002-35435

Holwerda BC, Jana S, Crosby WL, 1986. Organelle DNA variation in the genus Hordeum. Genetics 113 (1-2): 72.

Jaaska V, Jaaska V, 1986. Isoenzyme variation in the barley genus Hordeum L. I. Alcohol dehydrogenase and superoxide dismutase. Biochem Physiol Pflanzen 181: 301-320. http://dx.doi.org/10.1016/S0015-3796(86)80003-8

Jorgensen RB, 1986. Relationships in the barley genus (Hordeum): An electrophoretic examination of proteins. Hereditas 104: 273-291. http://dx.doi.org/10.1111/j.1601-5223.1986.tb00541.x

Laemmli UK, 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. http://dx.doi.org/10.1038/227680a0 PMid:5432063

Nishikawa T, Salomon B, Komatsuda T, Bothmer R von, Kadowaki K, 2002. Molecular phylogeny of the genus Hordeum using three chloroplast DNA sequences. Genome 45 (6): 1157-1166. http://dx.doi.org/10.1139/g02-088 PMid:12502262

Rohlf FJ, 1998. NTSYSpc. Numerical taxonomy and multivariate analysis system, version 2.02c. Exeter Software, NY. PMCid:PMC24543

Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW, 1984. Ribosomal DNA spacer length polymorphism in barley. Mendelian inheritance, chromosomal location and population dynamics. P Natl Acad Sci USA 81: 8014–8018. http://dx.doi.org/10.1073/pnas.81.24.8014 PMid:6096873 PMCid:PMC392284

Saisho D, Purugganan MD, 2007. Molecular phylogeography of domesticated barley traces expansion of agriculture in the Old World. Genetics 177: 1765-1776. http://dx.doi.org/10.1534/genetics.107.079491 PMid:17947416 PMCid:PMC2147987

Shi-dong Y, Yu-ming W, Peng-fei Q, You-liang Z, 2008. Sequence polymorphisms and phylogenetic relationships of hina gene in wild barley from Tibet, China. Agric Sci in China 7(7): 796-803. http://dx.doi.org/10.1016/S1671-2927(08)60116-9

Svitashev S, Bryngelsson T, Vershinin A, Pedersen C, Säll T and Bothmer R von, 1994. Phylogenetic analysis of the genus Hordeum using repetitive DNA sequences. Theor Appl Genet 89: 801-810.

Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M, 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23 (21): 4407-4414. http://dx.doi.org/10.1093/nar/23.21.4407 PMid:7501463 PMCid:PMC307397

Zimmer EA, Wen J, 2012. Using nuclear gene data for plant phylogenetics: progress and prospects. Mol Phylogenet Evol 65: 774–785. http://dx.doi.org/10.1016/j.ympev.2012.07.015 PMid:22842093




DOI: 10.5424/sjar/2013113-3935