A mathematical model to estimate the volume of grey water of pesticide mixtures

  • Lourival Costa Paraiba Embrapa Meio Ambiente, CxP. 69, CEP 13820-000, Jaguariúna. São Paulo
  • Ricardo A. Almeida Pazianotto Embrapa Meio Ambiente, CxP. 69, CEP 13820-000, Jaguariúna. São Paulo
  • Alfredo J. Barreto Luiz Embrapa Meio Ambiente, CxP. 69, CEP 13820-000, Jaguariúna. São Paulo
  • Aline de Holanda Nunes Maia Embrapa Meio Ambiente, CxP. 69, CEP 13820-000, Jaguariúna. São Paulo
  • Claudio Martin Jonsson Embrapa Meio Ambiente, CxP. 69, CEP 13820-000, Jaguariúna. São Paulo
Keywords: water footprint, pesticide management, sugarcane, herbicide, water quality objective (WQO)

Abstract

The usual method to calculate grey water footprint does not take into account the volume of water required to dilute concentrations of pesticide mixtures in freshwater and it also depends on maximum concentration limit acceptable in water. We propose a model to estimate the grey water footprint of crops by calculating the volume of water necessary to dilute pesticide mixtures reaching freshwaters. The model requires short-term toxicity data from aquatic organisms based on EC50 values, soil pesticide half-life and soil sorption coefficient values, and does not require maximum concentration limit acceptable in water. The lixiviation rate and runoff rate of each pesticide was estimated by attenuation factor and by Soilfug model, respectively. The usefulness of the proposed model was illustrated by estimating the volume of grey water required to dilute the 17 most widely used herbicides in sugarcane crops of Brazil. The grey water footprint corresponding to the recommended agronomic dose for each herbicide varied between 4.20×106 m3 yr-1 and 1.20×1012 m3 yr-1 and the grey water footprint of the mixture of herbicides was 2.36×1012 m3 yr-1 in a cultivated area of 8.4×106 ha. These results establish the ranking position of each herbicide in the composition of the grey water footprint of mixture of herbicides. The rank of each herbicide could be used to create a label to be placed on the package of the pesticide, thus informing farmers about the volume of grey water per hectare due to the use of this herbicide.

Downloads

Download data is not yet available.

References

Aldaya MM, Hoekstra AY, 2009. Water footprint accounting for water quality. Presentation from the 2009 World Water Week, Stockholm. Available from http://www.worldwaterweek.org/documents/WWW_PDF/2009/sunday/K24/CEO/Aldaya-Stockholm-16Aug2009_Kompatibilitetslge.pdf [February 2013].

Allan JA, 1993. Fortunately there are substitutes for water otherwise our hydro-political futures would be impossible. In: Priorities for water resources allocation and management (ODA, eds.). London, pp: 13-26.

Allan JA, 1994. Overall perspectives on countries and regions. In: Water in the Arab world: perspectives and prognoses (Rogers P, Lydon P, eds.). Harvard Univ., Divis. Appl. Sci., Cambridge, UK. pp: 65-100.

Armas ED, Monteiro RTR, Amancio AV, Correa RML, Guercio MA, 2005. The use of pesticides in sugar cane at the Corumbataí river basin and the risk of water pollution. Quim Nova 28(6): 975-982. http://dx.doi.org/10.1590/S0100-40422005000600008

Backhaus T, Altenburger R, Arrhenius A, Blanck H, Faust M, Finizio A, Gramatica P, Grote M, Junghans M, Meyer W et al., 2003. The BEAM-project: prediction and assessment of mixture toxicities in the aquatic environment. Cont Shelf Res 23(17-19): 1757-1769. http://dx.doi.org/10.1016/j.csr.2003.06.002

Backhaus T, Faust M, 2012. Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46(5): 2564-2573. http://dx.doi.org/10.1021/es2034125

Barra R, Vighi M, di Guardo A, 1995. Prediction of surface water input of chloridazon and chlorpyrifos from an agricultural watershed in Chile. Chemosphere 30(3): 485-500. http://dx.doi.org/10.1016/0045-6535(94)00412-N

Battaglin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT, 2011. Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005-2006. Water Air Soil Pollut 218(1-4): 307-322. http://dx.doi.org/10.1007/s11270-010-0643-2

Bliss CI, 1939. The toxicity of poisons applied jointly. Ann Appl Biol 26: 585-615. http://dx.doi.org/10.1111/j.1744-7348.1939.tb06990.x

Calamari D, Zhang L, 2002. Environmental risk assessment of pesticides on aquatic life in Xiamen, China. Toxicol Lett 128(1-3): 45-53. http://dx.doi.org/10.1016/S0378-4274(01)00532-X

Carneiro FF, Pignati W, Rigotto RM, Augusto LGS, Rizzolo A, Muller NM, Alexandre VP, Friedrich K, Mello MSC, 2012. Dossiê ABRASCO: Um alerta sobre os impactos dos agrotóxicos na saúde. Parte 1-Agrotóxicos, Segurança Alimentar e Nutricional e Saúde. Rio de Janeiro, Brasil. 101 pp.

Centofanti T, Hollis JM, Blenkinsop S, Fowler HJ, Truckell I, Dubus IG, Reichenberger S, 2008. Development of agro-environmental scenarios to support pesticide risk assessment in Europe. Sci Total Environ 407(1): 574-588. http://dx.doi.org/10.1016/j.scitotenv.2008.08.017

Chapagain AK, Hoekstra AY, 2007. The water footprint of coffee and tea consumption in the Netherlands. Ecol Econ 64(1): 109-118. http://dx.doi.org/10.1016/j.ecolecon.2007.02.022

Chapagain AK, Hoekstra AY, 2011. The blue, green and grey water footprint of rice from production and consumption perspectives. Ecol Econ 70(4): 749-758. http://dx.doi.org/10.1016/j.ecolecon.2010.11.012

Chapagain AK, Hhoekstra AY, Savenije HHG, Gautam R, 2006. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries. Ecol Econ 60(1): 186-203. http://dx.doi.org/10.1016/j.ecolecon.2005.11.027

Christoffoleti PJ, López-Ovejero RF, Nicolai M, Carvalho SJP, 2005. Manejo de plantas daninhas na cultura da cana-de-açúcar: novas moléculas herbicidas II Simpósio de Tecnologia de Produção de Cana-de-Açúcar. Piracicaba: ESALQ/POTAFOS. [CD Rom].

CONAB, 2012. Acompanhamento de safra brasileira: cana-de-açúcar, terceiro levantamento, dezembro/2011. Brasília. Available from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/12_12_12_10_34_43_boletim_cana_portugues_12_2012.pdf [February 2013].

CSTE/EEC, 1994. EEC water quality objectives for chemicals dangerous to aquatic environments. Rev Environ Contam Toxicol 137: 83-112. http://dx.doi.org/10.1007/978-1-4612-2662-8_2

EEC, 2003. Technical guidance document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and the Commission regulation (EC) 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. European Commission, Joint Research Centre, European Chemical Bureau, EUR 20418 EN/4.

Di Guardo A, Williams RJ, Matthiessen P, Brooke DN, Calamari D, 1994. Simulation of pesticide runoff at Rosemaund Farm (UK) using the SoilFug model. Sci Pollut Res 1(3): 151-160. http://dx.doi.org/10.1007/BF02986938

Fava L, Orru MA, Scardala S, Slonzo E, Fardella M, Strumia C, Martinelli A, Finocchiaro S, Previtera M, Franchi S, Cala P, Dovis M, Bartoli D, Sartori G, Broglia L, Funari E, 2010. Pesticides and their metabolites in selected Italian groundwater and surface water used for drinking. Ann Ist Super Sanita 46(3): 309-316.

Finizio A, Villa S, Tremolada P, Gaggi C, 2003. Assessing the environmental risk of pesticide mixtures in water bodies: the case of the Luria basin (Lombardia Region, Italy). Proc XII Symp Pesticide Chemistry, Piacenza, Italy, pp: 667-676.

Finizio A, Villa S, Vighi M, 2005. Predicting pesticide mixtures load in surface waters from a given crop. Agr Ecosyst Environ 111(1-4): 111-118. http://dx.doi.org/10.1016/j.agee.2005.05.009

Gerbens-Leenes PW, Hoekstra AY, 2009. The water footprint of sweeteners and bio-ethanol from sugar cane, sugar beet and maize. Value of Water Research Report Series No 38. UNESCO-IHE, Delft, The Netherlands. Available from www.waterfootprint.org/Reports/Report38-WaterFootprint-sweeteners-ethanol.pdf [February 2013].

Hamilton D, Ambrus A, Dieterle R, Felsot A, Harris C, Petersen B, Racke K, Wong SS, Gonzalez R, Tanaka K, Earl M, Roberts G, Bhula R, 2004. Pesticide residues in food-acute dietary exposure. Pest Manag Sci 60(4): 311–339. http://dx.doi.org/10.1002/ps.865

Hoekstra AY, Hung PQ 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade. Value of Water Research Report Series No. 11. Available from UNESCO-IHE, Delf, The Netherlands. http://www.waterfootprint.org/Reports/Report11.pdf [February 2013].

Hoekstra AY, Chapagain AK, 2008. Globalization of water: sharing the planet's freshwater resources. Blackwell Publ. Ltd., Oxford, UK. 224 pp.

Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM, 2011. The water footprint assessment manual: Setting the global standard. Earthscan, Washington, DC, USA. 228 pp.

Hornsby AG, don Wauchope R, Herner AE, 1996. Pesticide properties in the environment. Springer-Verlag, Inc., NY, USA. 227 pp.

Jeswani HK, Azapagic A, 2011. Water footprint: methodologies and a case study for assessing the impacts of water use. J Clean Prod 19(12): 1288-1299. http://dx.doi.org/10.1016/j.jclepro.2011.04.003

Jury WA, Gardner WR, Gardner WH, 1992. Soil physics. John Wiley & Sons, Inc., NY, USA. 328 pp.

Liess M, Schäfer RB, Schriever CA, 2008. The footprint of pesticide stress in communities-species traits reveal community effects of toxicants. Sci Total Environ 406(3): 484-490. http://dx.doi.org/10.1016/j.scitotenv.2008.05.054

Liu C, Kroeze C, Hoekstra AY, Gerbens-Leenes W, 2012. Past and future trends in grey water footprints of anthropogenic nitrogen and phosphorus inputs to major world rivers. Ecol Indic 18: 42-49. http://dx.doi.org/10.1016/j.ecolind.2011.10.005

Loewe S, 1953. The problem of synergism and antagonism of combined drugs. Arzneimittel-Forsch 3(6): 285-290.

Lorenzi H, 2000. Manual de identificação e controle de plantas daninhas: plantio direto e convencional. Plantarum, Nova Odessa, São Paulo, Brazil. 299 pp.

Machado RE, Vettorazzi CA, Xavier AC, 2003. Alternative scenario simulation of land use in a watershed through geoprocessing and modeling techniques. Rev Bras Cienc Solo 27(4): 727-733. http://dx.doi.org/10.1590/S0100-06832003000400017

Mekonnen MM, Hoekstra AY, 2010. A global and high-resolution assessment of the green, blue and grey water footprint of wheat. Hydrol Earth Syst Sci 14(7): 1259-1276. http://dx.doi.org/10.5194/hess-14-1259-2010

Milà i Canals L, Chenoweth J, Chapagain A, Orr S, Antón A, Clift R, 2009. Assessing freshwater use impacts in LCA: part I e inventory modelling and characterisation factors for the main impact pathways. Int J Life Cycle Assess 14(1): 28-42. http://dx.doi.org/10.1007/s11367-008-0030-z

Page G, Ridoutt B, Bellotti B, 2011. Fresh tomato production for the Sydney market: an evaluation of options to reduce freshwater scarcity from agricultural water use. Agr Water Manage 100(1): 18-24. http://dx.doi.org/10.1016/j.agwat.2011.08.017

Paraiba LC, Spadotto CA, 2002. Soil temperature effect in calculating attenuation and retardation factors. Chemosphere 48(9): 905-912. http://dx.doi.org/10.1016/S0045-6535(02)00181-9

Peruzzo PJ, Porta AA, Ronco AE, 2008. Levels of glyphosate in surface waters, sediments and soils associated with direct sowing soybean cultivation in north pampasic region of Argentina. Environ Pollut 156(1): 61-66. http://dx.doi.org/10.1016/j.envpol.2008.01.015

Pfister S, Bayer P, Koehler A, Hellweg S, 2011. Projected water consumption in future global agriculture: scenarios and related impacts. Sci Total Environ 409(20): 4206-4216. http://dx.doi.org/10.1016/j.scitotenv.2011.07.019

Rao PSC, Hornsby AG, Jessup RE, 1985. Indexes for ranking the potential for pesticide contamination of groundwater. Soil Crop Sci Soc Fl 44: 1-8.

Ridoutt BG, Juliano P, Sanguansri P, Sellahewa J, 2010. The water footprint of food waste: case study of fresh mango in Australia. J Clean Prod 18(16-17): 1714-1721. http://dx.doi.org/10.1016/j.jclepro.2010.07.011

Ridoutt BG, Sanguansri P, Freer M, Harper GS, 2012. Water footprint of livestock: comparison of six geographically defined beef production systems. Int J Life Cycle Assess 17(2): 165-175. http://dx.doi.org/10.1007/s11367-011-0346-y

Salmoral G, Aldaya MM, Chico D, Garrido A, Llamas R, 2011. The water footprint of olives and olive oil in Spain. Span J Agric Res 9(4): 1089-1104. http://dx.doi.org/10.5424/sjar/20110904-035-11

Sausse C, 2011. On the water footprint of energy from biomass: A comment. Ecol Econ 71(1-3): 1-3. http://dx.doi.org/10.1016/j.ecolecon.2011.09.005

Squillace PJ, Scott JC, Moran MJ, Nolan BT, Kolpin DW, 2002. VOCs, pesticides, nitrate, and their mixtures in groundwater used for drinking water in the united states. Environ Sci Technol 36(9): 1923-1930. http://dx.doi.org/10.1021/es015591n

Verro R, Finizio A, Otto S, Vighi M, 2009. Predicting pesticide environmental risk in intensive agricultural areas. I: screening level risk assessment of individual chemicals in surface waters. Environ Sci Technol 43(2): 522-529. http://dx.doi.org/10.1021/es801855f

Wendland E, Barreto C, Gomes LH, 2007. Water balance in the Guarani Aquifer outcrop zone based on hydrogeologic monitoring. J Hydrol 342(3-4): 261-269. http://dx.doi.org/10.1016/j.jhydrol.2007.05.033

Published
2014-04-01
How to Cite
Paraiba, L. C., Pazianotto, R. A. A., Luiz, A. J. B., Maia, A. de H. N., & Jonsson, C. M. (2014). A mathematical model to estimate the volume of grey water of pesticide mixtures. Spanish Journal of Agricultural Research, 12(2), 509-518. https://doi.org/10.5424/sjar/2014122-4059
Section
Water management