Canary tomato export prices: comparison and relationships between daily seasonal patterns

G. Martin-Rodriguez, J. J. Caceres-Hernandez

Abstract


Statistical procedures are proposed to describe, compare and forecast the behaviour of seasonal variations in two daily price series of Canary tomato exported to German and British markets, respectively, over the last decade. These seasonal patterns are pseudo-periodic as the length of the seasonal period changes frequently in dependence of market conditions. Seasonal effect at a day in the harvesting period is defined as a spline function of the proportion of the length of such a period elapsed up to such a day. Then, seasonal patterns for the two series are compared in terms of the area between the corresponding spline functions. The ability of these models to capture the dynamic process of change in the seasonal pattern is useful to forecasting purpose. Furthermore, an analytical tool is also proposed to obtain forecasts of the seasonal pattern in one of these two series from the forecasts of the seasonal pattern in the other one. These procedures are useful for farmers in developing strategies related to the seasonal distribution of tomato production exported to each market.

Keywords


daily series; seasonal effects; splines

Full Text:

PDF

References


Amikuzuno J, von Cramon-Taubadel S, 2012. Seasonal variation in price transmission between tomato markets in Ghana. J Afr Econ 21(4): 669-686. http://dx.doi.org/10.1093/jae/ejs008

Bakucs LZ, Brummer B, von Cramon-Taubadel S, Imre F, 2012. Wheat market integration between Hungary and Germany. Appl Econ Lett 19(8): 785-788. http://dx.doi.org/10.1080/13504851.2011.603688

Ben-Kaabia M, Gil JM, 2008. Asimetrías en la transmisión de precios en el sector del tomate en Espa-a. Econ Agrar Recurs Nat 8(1): 57-82.

Box GEP, Jenkins G, 1976. Time series analysis: forecasting and control. Holden-Day, San Francisco. 575 pp.

Cabrero A, Camba-Méndez G, Hirsch A, Nieto F, 2009. Modelling the daily bank notes in circulation in the context of the liquidity management of the European Central Bank. J Forecast 28: 194-217. http://dx.doi.org/10.1002/for.1118

Cáceres-Hernández JJ, 2000. La exportación de tomate en Canarias. Elementos para una Estrategia Competitiva. Ediciones Canarias, La Laguna, Spain. 366 pp.

Cáceres-Hernández JJ, 2001. Optimalidad del patrón estacional de las exportaciones canarias de tomate. Estud Econ Aplic 18: 41-66.

Cáceres-Hernández JJ, Ramos-Henríquez JM, González-Gómez JI, Martín-Rodríguez G, Morini-Marrero S, 2009. Elección del calendario óptimo de exportación del tomate canario. Econ Agrar Recurs Nat 9(2): 105-124.

Campenhout BV, 2007. Modelling trends in food market integration: method and an application to Tanzanian maize markets. Food Policy 32: 112-127. http://dx.doi.org/10.1016/j.foodpol.2006.03.011

Cruz-Ferreiro AI, Ameneiro-Gómez M, 2007. Transmisión vertical de precios en el mercado nacional de los productos pesqueros frescos. Revista de Economía Aplicada 44(15): 85-107.

Emmanouilides CJ, Fousekis P, 2012. Testing for the LOP under nonlinearity: An application to four major EU pork markets. Agr Econ 43(6): 715-723. http://dx.doi.org/10.1111/j.1574-0862.2012.00614.x

Esposti R, Listorti G, 2013. Agricultural price transmission across space and commodities during price bubbles. Agr Econ 44(1): 125-139. http://dx.doi.org/10.1111/j.1574-0862.2012.00636.x

Eubank RL, 1988. Spline smoothing and nonparametric regression. M. Dekker, NY, USA. 360 pp.

Galdeano-Gómez E, Pérez-Mesa JC, 2012. Household food consumption and quality differentiation in demand system: an approach for endogenous prices. J Food Product Market 18(2): 139-162. http://dx.doi.org/10.1080/10454446.2012.653782

García-Álvarez-Coque JM, Martínez-Gómez V, Villanueva M, 2009. A trade model to evaluate the impact of trade liberalisation on EU tomato imports. Span J Agric Res 7(2): 235-247. http://dx.doi.org/10.5424/sjar/2009072-416

Harvey AC, 1989. Forecasting, structural time series models and the Kalman filter. Cambridge Univ. Press, Cambridge. 572 pp.

Harvey AC, Koopman SJ, 1993. Forecasting hourly electricity demand using time varying splines. J Am Stat Assoc 88: 1228-1236. http://dx.doi.org/10.1080/01621459.1993.10476402

Harvey AC, Koopman SJ, Riani M, 1997. The modelling and seasonal adjustment of weekly observations. J Bus Econ Stat 15: 354-368.

Jumah A, Kunst RM, 2008. Seasonal prediction of European cereal prices: good forecasts using bad models? J Forecast 27: 391-406. http://dx.doi.org/10.1002/for.1062

Kantanantha N, Serban N, Griffin P, 2010. Yield and price forecasting for stochastic crop decision planning. J Agr Biol Environ Stat 15(3): 362-373. http://dx.doi.org/10.1007/s13253-010-0025-7

Martín-Rodríguez G, Cáceres-Hernández JJ, 2005. Modelling weekly Canary tomato exports. Agr Econ 33: 255-267. http://dx.doi.org/10.1111/j.1574-0864.2005.00065.x

Martín-Rodríguez G, Cáceres-Hernández JJ, 2010. Spline and the proportion of the seasonal period as a season index. Econ Model 27: 83-88. http://dx.doi.org/10.1016/j.econmod.2009.07.021

Martín-Rodríguez G, Cáceres-Hernández JJ, 2012. Forecasting pseudo-periodic seasonal patterns in agricultural prices. Agr Econ 43: 531-543. http://dx.doi.org/10.1111/j.1574-0862.2012.00601.x

Martín-Rodríguez G, Cano-Fernández VJ, Cáceres-Hernández JJ, 2002. Exportación de tomate en Canarias: ¿un patrón estacional estable? Econ Agrar Recurs Nat 2: 53-72.

Miller DG, Hayenga ML, 2001. Price cycles and asymmetric price transmission in the U.S. pork market. Am J Agr Econ 83(3): 551-562. http://dx.doi.org/10.1111/0002-9092.00177

Motamed M, Foster KA, Tyner WE, 2008. Applying cointegration and error correction to measure trade linkages: maize prices in the United States and Mexico. Agr Econ 39: 29-39. http://dx.doi.org/10.1111/j.1574-0862.2008.00312.x

Pérez-Mesa JC, Galdeano-Gómez E, 2011. Asymmetric margins in prices and retail supply chain integration: the Spanish vegetable case. J Int Food Agribus Market 23(3): 211-230. http://dx.doi.org/10.1080/08974438.2011.586911

Pérez-Mesa JC, Galdeano-Gómez E, Aznar-Sánchez JA, 2010. Retail price rigidity in perishable food products: a case study. Span J Agric Res 8(4): 895-907. http://dx.doi.org/10.5424/sjar/2010084-1383

Peterson HH, Tomek WG, 2005. How much of commodity price behaviour can a rational expectations storage model explain? Agr Econ 33: 289-303. http://dx.doi.org/10.1111/j.1574-0864.2005.00068.x

Poirier DJ, 1976. The econometric of structural change, with special emphasis on spline functions. North Holland Publ. Co., Amsterdam. 206 pp. PMCid:PMC1017537

Richards TJ, Patterson PM, Van Ispelen P, 1998. Modelling fresh tomato marketing margins: econometrics and neural networks. Agr Resour Econ Rev 27(2): 186-199.

Rumánková L, 2012. Examination of existence of the law of one price at Czech meat market. Agris on-line, Papers in Economics and Informatics 4(1): 39-47.

Sorensen C, 2002. Modelling seasonality in agricultural commodity futures. The Journal of Future Markets 22(5): 393-426. http://dx.doi.org/10.1002/fut.10017

Steen M, Gjolberg O, 1999. Forecasting prices at the Dutch flower auctions. J Agr Econ 50(2): 258-268. http://dx.doi.org/10.1111/j.1477-9552.1999.tb00812.x

Stephens EC, Mabaya E, von Cramon-Taubadel S, Barrett CB, 2012. Spatial price adjustment with and without trade. Oxford Bull Econ Stat 74(3): 453-469. http://dx.doi.org/10.1111/j.1468-0084.2011.00651.x

Tomek WG, Peterson HH, 2001. Risk management in agricultural markets: a review. The Journal of Future Markets 21(10): 953-985. http://dx.doi.org/10.1002/fut.2004




DOI: 10.5424/sjar/2013114-4063