Short communication. Mitochondrial DNA diversity of the founder populations of the Asturcón pony

I. Alvarez, I. Fernandez, M. Cuervo, D. Martin, L. Lorenzo, F. Goyache

Abstract


A 380 bp fragment of the horse D-loop region was analysed in 42 founder mare samples of the bay-coated Asturcón pony obtained in three different and reproductively isolated mountainous areas of Western Asturias: range of “La Bobia” (20), range of “Carondio” (13) and range of “El Aguión” (9). These sequences were compared with the information provided by 37 founder matrilines of black-coated Asturcón assigned to the range of “Sueve” (26) and the “out-of-Sueve” (11) founder populations. The aim of this research was to ascertain the differences in founder mtDNA diversity between the two strains of the Asturcón pony and if such differences have geographical consistency. The 79 sequences analysed gave 16 different haplotypes defined by 33 polymorphic sites. The two Asturcón strains shared eight haplotypes that gathered 76% and 81% of the samples available in bay-coated and black-coated Asturcón, respectively. Both haplotypic (0.027 ± 0.006) and nucleotide (0.021 ± 0.011) diversity were higher in the bay-coated than in the black-coated Asturcón (0.024 ± 0.005 and 0.016 ± 0.009, respectively). AMOVA analyses failed in assessing any statistically differentiation among Asturcón geographical populations or strains. Most genetic variability is due to the individuals (estimates varying from 96.34% to 99.81%). Differentiation among strains or population took low and non-significant values. Differentiation between Asturcón pony strains using mtDNA marker would not have clear support. The two strains of the Asturcón pony breed likely derive from the same ancestral mare population.

Keywords


D-loop; genetic variability; population structure; horse

Full Text:

PDF

References


Achilli A, Olivieri A, Soares P, Lancioni H, Kashani BH, Perego UA, Nergadze SG, Carossa V, Santagostino M, Capomaccio S, et al., 2012. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. P Natl Acad Sci USA 109: 2449-2454. http://dx.doi.org/10.1073/pnas.1111637109 PMid:22308342 PMCid:PMC3289334

Álvarez I, Royo LJ, Pérez-Pardal L, Fernández I, Lorenzo L, Goyache F, 2011. Assessing diversity losses due to selection for coat colour in the endangered bay-Asturcón pony using microsatellites. Livest Sci 135: 199-204. http://dx.doi.org/10.1016/j.livsci.2010.07.007

Álvarez I, Fernández I, Lorenzo L, Payeras L, Cuervo M, Goyache F, 2012. Founder and present maternal diversity in two endangered Spanish horse breeds assessed via pedigree and mitochondrial DNA information. J Anim Breed Genet 129: 271-279. http://dx.doi.org/10.1111/j.1439-0388.2012.00995.x PMid:22775259

Álvarez-Llana J, 1995. Morfología y caracteres raciales. In: Asturcones (Álvarez-Llana J, Álvarez-Sevilla A, Jáuregui-Campos J, eds). Ediciones Caja de Asturias, Oviedo, Spain. pp: 3-39.

Álvarez-Sevilla A, 1995. Pasado y presente de la raza. In: Asturcones (Álvarez-Llana J, Álvarez-Sevilla A, Jáuregui-Campos J, eds). Ediciones Caja de Asturias, Oviedo, Spain. pp: 145-214.

Bandelt H-J, Forster P, Rohl A, 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16: 37–48. http://dx.doi.org/10.1093/oxfordjournals.molbev.a026036 PMid:10331250

Excoffier L, Lischer HEL, 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10: 564-567. http://dx.doi.org/10.1111/j.1755-0998.2010.02847.x PMid:21565059

García-Dory MA, 1980. Asturcón. Caballo de los astures. Ediciones Caja de Ahorros de Asturias, Oviedo, Spain. 84 pp.

Goyache F, Álvarez I, Fernández I, Pérez-Pardal L, Royo LJ, Lorenzo L, 2011. Usefulness of molecular-based methods for estimating effective population size in livestock assessed using data from the endangered black-coated Asturcón pony. J Anim Sci 89: 1251–1259. http://dx.doi.org/10.2527/jas.2010-3620 PMid:21257782

Jansen TP, Forster MA, Levine H, Oelke M, Hurles M, Renfrew C, Weber J, Olek K, 2002. Mitochondrial DNA and the origins of the domestic horse. P Natl Acad Sci USA 99: 10905-10910. http://dx.doi.org/10.1073/pnas.152330099 PMid:12130666 PMCid:PMC125071

Pérez-Gutiérrez LM, De la Pe-a A, Arana P, 2008. Genetic analysis of the Hispano-Breton heavy horse. Anim Genet 39: 506–514. http://dx.doi.org/10.1111/j.1365-2052.2008.01762.x PMid:18680492

Royo LJ, Álvarez I, Beja-Pereira A, Molina A, Fernández I, Jordana J, Gómez E, Gutiérrez JP, Goyache F, 2005a. The origins of Iberian horses assessed via mitochondrial DNA. J Hered 96: 663-669. http://dx.doi.org/10.1093/jhered/esi116 PMid:16251517

Royo LJ, Álvarez I, Fernández I, Gutiérrez JP, Gómez E, Goyache F, 2005b. Characterisation of the founder matrilines in Asturcón pony via mitochondrial DNA. Proc 56th Annual Meeting of the European Association of Animal Production no 11, Uppsala (Sweden), 5–8 June. p: 98.

Royo LJ, Álvarez I, Gutiérrez JP, Fernández I, Goyache F, 2007. Genetic variability in the endangered Asturcón pony assessed using genealogical and molecular information. Livest Sci 107: 162-169. http://dx.doi.org/10.1016/j.livsci.2006.09.010

Sambrook J, Fritsch EF, Maniatis T, 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press. Cold Spring Harbor. 545 pp.

Tamura K, Dudley J, Nei M, Kumar S, 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-1599. http://dx.doi.org/10.1093/molbev/msm092 PMid:17488738

Vilà C, Leonard JA, Götherstoöm A, Marklund S, Sandberg K, Lindén K, Wayne RK, Ellegren H, 2001. Widespread origin of domestic horse lineages. Science 291: 474–477. http://dx.doi.org/10.1126/science.291.5503.474 PMid:11161199

White DJ, Wolff JN, Pierson M, Gemmell NJ, 2008. Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17: 4925–4942. http://dx.doi.org/10.1111/j.1365-294X.2008.03982.x PMid:19120984

Xu X, Arnason U, 1994. The complete mitochondrial DNA sequence of the horse, Equus caballus: extensive heteroplasmy of the control region. Gene 148: 357-362. http://dx.doi.org/10.1016/0378-1119(94)90713-7




DOI: 10.5424/sjar/2013113-4127