Identification of seed-related QTL in Brassica rapa

H. Bagheri, D. Pino-Del-Carpio, C. Hanhart, G. Bonnema, J. Keurentjes, M. G. M. Aarts

Abstract


To reveal the genetic variation, and loci involved, for a range of seed-related traits, a new F2 mapping population was developed by crossing Brassica rapa ssp. parachinensis L58 (CaiXin) with B. rapa ssp. trilocularis R-o-18 (spring oil seed), both rapid flowering and self-compatible. A linkage map was constructed using 97 AFLPs and 21 SSRs, covering a map distance of 757 cM with an average resolution of 6.4 cM, and 13 quantitative trait loci (QTL) were detected for nine traits. A strong seed colour QTL (LOD 26) co-localized with QTL for seed size (LOD 7), seed weight (LOD 4.6), seed oil content (LOD 6.6), number of siliques (LOD 3) and number of seeds per silique (LOD 3). There was only a significant positive correlation between seed colour and seed oil content in the yellow coloured classes. Seed coat colour and seed size were controlled by the maternal plant genotype. Plants with more siliques tended to have more, but smaller, seeds and higher seed oil content. Seed colour and seed oil content appeared to be controlled by two closely linked loci in repulsion phase. Thus, it may not always be advantageous to select for yellow-seededness when breeding for high seed oil content in Brassicas.

Keywords


F2 mapping population; genetic linkage map; quantitative trait loci; yellow seeds

Full Text:

PDF

References


Ahmed SU, Zuberi MI, 1971. Inheritance of seed coat colour in Brassica campestris L., variety Toria. Crop Sci 11: 309-310. http://dx.doi.org/10.2135/cropsci1971.0011183X001100020047x

Alonso-Blanco C, Blankenstijn-De Vries H, Hanhart C, Koornneef M, 1999. Natural allelic variation at seed size loci in relation to other life history traits of Arabidopsis thaliana. Proc Nat Acad Sci 96: 4710-4717. http://dx.doi.org/10.1073/pnas.96.8.4710 PMid:10200327 PMCid:PMC16397

Badani AG, Snowdon RJ, Wittkop B, Lipsa FD, Baetzel R, Horn R, De Haro A, Font R, Lühs W, Friedt W, 2006 Colocalization of a partially dominant gene for yellow seed colour with a major QTL influencing acid detergent fibre (ADF) content in different crosses of oilseed rape (Brassica napus). Genome 49: 1499-1509. http://dx.doi.org/10.1139/g06-091 PMid:17426765

Cao ZY, Tian F, Wang N, Jiang C, Lin B, Xia W, Shi J, Long Y, Zhang C, Meng J, 2010. Analysis of QTLs for erucic acid and oil content in seeds on A8 chromosome and the linkage drag between the alleles for the two traits inBrassica napus. J Genet Genomics 37: 231-240. http://dx.doi.org/10.1016/S1673-8527(09)60041-2

Chen BY, Heneen WK, 1992. Inheritance of seed colour in Brassica campestris L. and breeding for yellow-seeded B. napus L. Euphytica 59: 157-163. http://dx.doi.org/10.1007/BF00041268

Choi SR, Teakle GR, Plaha P, Kim JH, Allender CJ, Beynon E, Piao ZY, Soengas P, Han TH, King GJ et al., 2007. The reference genetic linkage map for the multinational Brassica rapa genome sequencing project. Theor Appl Genet 115: 777-792. http://dx.doi.org/10.1007/s00122-007-0608-z PMid:17646962

Debeaujon I, Peeters AJM, Karen M, Léon K, Koornneef M, 2001. The TRANSPARENT TESTA12 gene of Arabidopsis encodes a multidrug secondary transporter-like protein required for flavonoid sequestration in vacuoles of the seed coat endothelium. Plant Cell 13: 853-872. PMid:11283341 PMCid:PMC135529

Goossens A, Dillen W, De Clercq J, Van Montagu M, Angenon G, 1999. The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and arabidopsis plants. Plant Physiol 120: 1095-1104. http://dx.doi.org/10.1104/pp.120.4.1095 PMid:10444093 PMCid:PMC59343

Jönsson R, 1975. Yellow-seeded rape and turnip rape. II. Breeding for improved quality of oil and meal in yellow-seeded materials. Sveriges Utsädesfören Tidskr 85: 271-278.

Kebede B, Cheema K, Greenshields DL, Li C, Selvaraj G, Rahman H, 2012. Construction of genetic linkage map and mapping of QTL for seed color in Brassica rapa. Genome 55(12): 813-823. http://dx.doi.org/10.1139/g2012-066 PMid:23231600

Koornneef M, Blankestijn-De VH, Hanhart C, Soppe W, Peeters T, 1994. The phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not effective in the Landsberg erecta wild-type. Plant J 6: 911-919. http://dx.doi.org/10.1046/j.1365-313X.1994.6060911.x

Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T, 2012. A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS One 7(9): e44145. http://dx.doi.org/10.1371/journal.pone.0044145 PMid:22984469 PMCid:PMC3439492

Li X, Ramchiary N, Dhandapani V, Choi SR, Hur Y, Nou I-SN, Yoon MK, Lim YP, 2013. Quantitative trait loci mapping in Brassica rapa revealed the structural and functional conservation of genetic loci governing morphological and yield component traits in the A, B, and C subgenomes of Brassica species. DNA Res 20(1): 1-16. http://dx.doi.org/10.1093/dnares/dss029 PMid:23223793 PMCid:PMC3576654

Liu L, Stein A,Wittkop B,Sarvari P,Li J,Yan X,Dreyer F,Frauen M,Friedt W,Snowdon RJ, 2012. A knockout mutation in the lignin biosynthesis gene CCR1 explains a major QTL for acid detergent lignin content in Brassica napus seeds. Theor Appl Genet 8: 1573-1586. http://dx.doi.org/10.1007/s00122-012-1811-0 PMid:22350089

Lou P, Zhao J, Kim J, Shen S, Pino Del Carpio D, Song X, Vreugdenhil D, Wang X, Koornneef M, Bonnema G, 2007. Quantitative trait loci for flowering time and morphological traits in multiple populations of Brassica rapa. J Exp Bot 58: 4005-4016. http://dx.doi.org/10.1093/jxb/erm255 PMid:18048374

Lowe AJ, Moule C, Trick M, Edwards KJ, 2004. Efficient large-scale development of microsatellites for marker and mapping application in Brassica crop species. Theor Appl Genet 108: 1103-1112. http://dx.doi.org/10.1007/s00122-003-1522-7 PMid:15067397

McCallum CM, Comai L, Greene EA, Henikoff S, 2000. Targeted screening for induced mutations. Nat Biotechnol 18: 455-457. http://dx.doi.org/10.1038/74542 PMid:10748531

Rahman M, McVetty, PBE, 2011. A review of Brassica seed color. Can J Plant Sci 91: 437-446. http://dx.doi.org/10.4141/cjps10124

Rahman MH, 2001. Production of yellow-seeded Brassica napus through interspecific crosses. Plant Breeding 120: 463-472. http://dx.doi.org/10.1046/j.1439-0523.2001.00640.x

Rusholme RL, Higgins EE, Walsh JA, Lydiate DJ, 2007. Genetic control of broad-spectrum resistance to turnip mosaic virus in Brassica rapa (Chinese cabbage). J Gen Virol 88: 3177-3186. http://dx.doi.org/10.1099/vir.0.83194-0 PMid:17947545

Schranz ME, Quijada P, Sung SB, Lukens L, Amasino R, Osborn TC, 2002. Characterization and effects of the replicated flowering time gene FLC in Brassica rapa. Genetics 162: 1457-1468. PMid:12454088 PMCid:PMC1462321

Schwetka A, 1982. Inheritance of seed colour in turnip rape (Brassica campestris L.). Theor Appl Genet 62: 161-169. http://dx.doi.org/10.1007/BF00293352 PMid:24270566

Snowdon R, Lühs W, Friedt W, 2007. Oilseeds rape. In: Genome mapping and molecular breeding in plants (Kole C, ed.). Springer-Verlag Berlin (Heidelberg), pp: 211-263.

Snowdon RJ, Wittkop B, Rezaidad A, Hasan M, Lipsa F, Stein A, Friedt W, 2010. Regional association analysis delineates a sequenced chromosome region influencing antinutritive seed meal compounds in oilseed rape. Genome 53: 917-928. http://dx.doi.org/10.1139/G10-052 PMid:21076507

Soengas P, Hand P, Vicente JG, Pole JM, Pink DAC, 2007. Identification of quantitative trait loci for resistance to Xanthomonas campestris pv. campestris in Brassica rapa. Theor Appl Genet 114: 637-645. http://dx.doi.org/10.1007/s00122-006-0464-2 PMid:17160671

Stringam GR, 1980. Inheritance of seed color in turnip rape. Can J Plant Sci 60: 331-335. http://dx.doi.org/10.4141/cjps80-054

Stringam GR, Mcgregor DI, Pawlowski SH, 1974. Chemical and morphological characteristics associated with seed coat colour in rapeseed. Proc IV Int Rapeseed Congr, Giessen, June 4-8. pp: 99-108.

Tanhuanpää PK, Vilkki JP, Vilkki HJ, 2004. Mapping of a QTL for oleic acid concentration in spring turnip rape (Brassica rapa ssp. oleifera). Theor Appl Genet 92: 952-956. http://dx.doi.org/10.1007/BF00224034 PMid:24166621

Van Deynze AE, Pauls KP, 1993. The inheritance of seed colour and vernalization requirement in Brassica napus using doubled haploid populations. Euphytica 74: 77-83. http://dx.doi.org/10.1007/BF00033770

Vaughan JG, Phelan JR, Denford KE, 1976. Inheritance of seed coat colour in Brassica juncea. Can J Plant Sci 59: 635-637.

Wu J, Schat H, Sun R, Koornneef M, Wang X, Aarts MGM, 2007. Characterization of natural variation for zinc, iron and manganese accumulation and zinc exposure response in Brassica rapa L. Plant Soil 291:167-180. http://dx.doi.org/10.1007/s11104-006-9184-2

Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PBE, Li G, 2009. Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69: 553-563. http://dx.doi.org/10.1007/s11103-008-9437-y PMid:19039665

Zhang L, Yang G, Liu P, Hong D, Li S, He Q, 2011. Genetic and correlation analysis of silique-traits in Brassica napus L. by quantitative trait locus mapping. Theor Appl Genet 122: 21-31. http://dx.doi.org/10.1007/s00122-010-1419-1 PMid:20686746

Zhao J, Becker HC, Zhang D, Zhang Y, Ecke W, 2006. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield. Theor Appl Genet 113: 33-38. http://dx.doi.org/10.1007/s00122-006-0267-5 PMid:16614833




DOI: 10.5424/sjar/2013114-4160