Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought

  • Mohamed O. Fouad Plant Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, University Cadi Ayyad. PO Box 549, Gueliz, Marrakesh
  • Abdellatif Essahibi Plant Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, University Cadi Ayyad. PO Box 549, Gueliz, Marrakesh
  • Laila Benhiba Plant Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, University Cadi Ayyad. PO Box 549, Gueliz, Marrakesh
  • Ahmed Qaddoury Plant Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, University Cadi Ayyad. PO Box 549, Gueliz, Marrakesh
Keywords: mycorrhizal colonization, Olea europaea, water deficit, antioxidant activity, drought tolerance

Abstract

Olive trees are often subjected to a long dry season with low water availability which induces oxidative stress. The present study was conducted to evaluate the effectiveness of native Rhizophagus manihotis (Rma) and non-native Funneliformis mosseae (Fmo) arbuscular mycorrhizal (AM) fungi (AMF) in enhancing olive protection against oxidative stress induced by water deficit. Olive plantlets, cv. Picholine marocaine, were inoculated (AM-plants) or not (NM-plants) with Rma or Fmo and subjected to well-watered (75% of field capacity) or water-stressed (25% of field capacity) conditions. After two months, obtained results showed that water stress significantly decreased growth and biomass production of NM-plants, but AMF alleviated the detrimental effects of water deficit on the growth of olive plants. Inoculation with Rma increased shoot height by 120%, root length by 56%, fresh weight by 170% (shoot) and 210% (root), and dry weight by 220% (shoot) and 220% (root) compared to NM-plants. AM colonization enhanced drought tolerance in terms of protection against oxidative stress. Mycorrhizal plants showed lower levels of hydrogen peroxide (H2O2), malondialdehyde (MDA) and electrolyte leakage (EL) than NM-plants. Rma colonization decreased two times H2O2, 2.6 times MDA and two times EL levels compared to NM-plants. This protective effect seems to be due to the enhanced activities of superoxide dismutase (534 U mg-1 protein), catalase (298 U mg-1 protein), guaiacol peroxidase (47 U mg-1 protein), and ascorbate peroxidase (305 U mg-1 protein) which were highest in Rma-plants. Moreover, Rma-plants showed the lowest oxidative damage to lipid and highest soluble protein content. Thus, the native AMF Rma ought to be considered as a biological tool for enhancing olive tolerance to drought.

Downloads

Download data is not yet available.

References

Abbaspour H, Saeidi-Sarb S, Afsharia H, Abdel-Wahhab MA, 2012. Tolerance of mycorrhiza infected pistachio (Pistacia vera L.) seedling to drought stress under glasshouse conditions. J Plant Physiol 169: 704-709. http://dx.doi.org/10.1016/j.jplph.2012.01.014

Aebi H, 1984. Catalase in vitro. Method Enzymol 105: 121-126. http://dx.doi.org/10.1016/S0076-6879(84)05016-3

Alguacil MM, Hernández JA, Caravaca F, Portillo B, Roldán A, 2003. Antioxidant enzyme activities in shoots from three mycorrhizal shrub species afforested in a degraded semi-arid soil. Physiol Plant 118: 562-570. http://dx.doi.org/10.1034/j.1399-3054.2003.00149.x

Al-Karaki GN, Mcmichael B, Zah J, 2004. Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14: 263-269. http://dx.doi.org/10.1007/s00572-003-0265-2

Amako K, Chen GX, Asada K, 1994. Separate assays specific for ascorbate peroxidase and guaiacol peroxidase and for the chloroplastic and cytosolic isozymes of ascorbate peroxidase in plants. Plant Cell Physiol 35: 497-504.

Arafat AHA, He C, 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci Hortic 127: 228-233. http://dx.doi.org/10.1016/j.scienta.2010.09.020

Aroca R, Irigoyen JJ, Sanchez-Diaz M, 2003. Drought enhances maize chilling tolerance. II. Photosynthetic traits and protective mechanisms against oxidative stress. Physiol Plant 117: 540-549. http://dx.doi.org/10.1034/j.1399-3054.2003.00065.x

Bartels D, 2001. Targeting detoxification pathways: an efficient approach to obtain plants with multiple stress tolerance. Trends Plant Sci 6: 284-286. http://dx.doi.org/10.1016/S1360-1385(01)01983-5

Baslam M, Qaddoury A, Goicoechea MN, Meddich A, 2010. Arbuscular mycorrhizal fungi influence growth and antioxidant production by date palm seedlings under well-watered and drought conditions. Proc Third SMBBM Int. Cong. of Biochemistry. Marrakech (Morocco), April 20-24. pp: 299-303.

Beltrano J, Ronco MG, 2008. Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: effect on growth and cell membrane stability. Braz J Plant Physiol 20 (1): 29-37. http://dx.doi.org/10.1590/S1677-04202008000100004

Bethlenfalvay GJ, Brown MS, Ames RN, Thomas RE, 1988. Effects of drought on host and endophyte development in mycorrhizal soybeans in relation to water use and phosphate uptake. Physiol Plant 72: 565-571. http://dx.doi.org/10.1111/j.1399-3054.1988.tb09166.x

Beyer WF, Fridovich I, 1987. Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Biochem 161: 559-566. http://dx.doi.org/10.1016/0003-2697(87)90489-1

Binet MN, Lemoine MC, Martin C, Chambon C, Gianinazzi S, 2007. Micropropagation of olive (Olea europaea L.) and application of mycorrhiza to improve plantlet establishment. In Vitro Cell Dev Biol Plant 43: 473-478. http://dx.doi.org/10.1007/s11627-007-9097-7

Bradford MM, 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. http://dx.doi.org/10.1016/0003-2697(76)90527-3

Dhindsa RS, Plumb-Dhindsa P, Thorpe TA, 1981. Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32: 93-101. http://dx.doi.org/10.1093/jxb/32.1.93

Dionisio-Sese ML, Tobita S, 1998. Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135: 1-9. http://dx.doi.org/10.1016/S0168-9452(98)00025-9

Essahibi A, Cavallaro V, Barbera A, Qaddoury A, 2013. Effect of arbuscular mycorrhizal fungi (AMF) on growth and physiology of carob seedling under nursery conditions. Proc First Int. Am. Moroc. Agr. Sci. Conf., Rabat (Morocco), Mar 18-19. pp: 56-57.

Estaun V, Cambrubi A, Calvet C, Pinochet J, 2003. Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Amer Soc Hort Sci 128: 767-775.

Estrada B, Aroca R, Barea JM, Ruiz-Lozano JM, 2013. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci 201-202: 42-51. http://dx.doi.org/10.1016/j.plantsci.2012.11.009

Faber BA, Zasoske RJ, Munns DN, Shackel K, 1991. A method for measuring hyphal nutrition and water uptake in mycorrhizal plants. Can J Bot 69: 87-94. http://dx.doi.org/10.1139/b91-012

Faghire M, Baslam M, Samri S, Meddich A, Goicoechea N, Qaddoury A, 2010. Effect of arbuscular mycorrhizal colonization on nutrient status, water relations and growth of date palm seedlings under water stress. Acta Hortic 882: 833-838.

Fouad MO, Essahibi A, Qaddoury A, 2012. Effects of arbuscular mycorrhizal fungi on growth, water relation and antioxidant enzymes activities in Moroccan picholine olive plantlets under water stress. Proc Integrated Soil Fertility Management in Africa: from microbes to markets. Nairobi (Kenya), Oct 19-26. pp: 99-100.

Fouad MO, Essahibi A, Qaddoury A, 2013. Arbuscular mycorrhizal fungi enhanced hardening and post hardening water stress tolerance of under mist system rooted semi-herbaceous olive cuttings. Proc 7th Int. Conf. "Mycorrhiza for All: An Under-Earth Revolution", New Delhi (India), Jan 6-11. pp: 216-217

Gimenez C, Fereres E, Ruz C, Orgaz F, 1997. Water relations and gas exchange of olive trees: diurnal and seasonal patterns of leaf water potential, photosynthesis and stomatal conductance. Acta Hortic 449: 411-415.

Lu B, Chen XN, Li ZY, Zhou XW, Xu LJ, 1999. The relationship between peroxidase activity and growth vigor of orange cv. Xiangfeng grafted on different rootstocks. Southwest China J Agric Sci 12: 63-67.

Manoharan PT, Shanmugaiah V, Balasubramanian N, Gomathinayagam S, Sharma MP, Muthuchelian K, 2010. Influence of AM fungi on the growth and physiological status of Erythrina variegata Linn. grown under different water stress conditions. Eur J Soil Biol 46: 151-156. http://dx.doi.org/10.1016/j.ejsobi.2010.01.001

Meddich A, Oihabi A, Abbas Y, Bizid E, 2000. Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie 20: 283-295. http://dx.doi.org/10.1051/agro:2000127

Mittler R, 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7: 405-410. http://dx.doi.org/10.1016/S1360-1385(02)02312-9

Moucheshi A, Heidari B, Assad MT, 2012. Alleviation of drought stress effects on wheat using arbuscular mycorrhizal symbiosis. International Journal of AgriScience 2 (1): 35-47.

Ouahmane L, Hafidi M, Thioulouse J, Ducousso M, Kisa M, Prin Y, Galiana A, Boumezzough A, Duponnois R, 2007. Improvement of Cupressus atlantica Gaussen growth by inoculation with native arbuscular mycorrhizal fungi. J Appl Microbiol 103: 683-690. http://dx.doi.org/10.1111/j.1365-2672.2007.03296.x

Patterson BD, Macrae EA, Ferguson IB, 1984. Estimation of hydrogen peroxide in plant extracts using titanium (IV). Anal Biochem 139: 487-492. http://dx.doi.org/10.1016/0003-2697(84)90039-3

Phillips JM, Hayman DS, 1970. Improve procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158-161. http://dx.doi.org/10.1016/S0007-1536(70)80110-3

Polle A, Otter T, Seifert F, 1994. Apoplastic peroxidases and lignification in needles of Norway (Picea abies L.). Plant Physiol 106: 53-60.

Porcel R, Ruiz-Lozano JM, 2004. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J Exp Bot 55 (403): 1743-1750. http://dx.doi.org/10.1093/jxb/erh188

Porras-Piedra A, Soriano-Martín M L, Porras-Soriano A, Fernández-Izquierdo G, 2005. Influence of arbuscular mycorrhizas on the growth rate of mist-propagated olive plantlets. Span J Agric Res 3 (1): 98-105. http://dx.doi.org/10.5424/sjar/2005031-129

Porras-Soriano A, Soriano-Martin ML, Porras-Piedra A, Azcon R, 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166: 1350-1359. http://dx.doi.org/10.1016/j.jplph.2009.02.010

Reddy AR, Chaitanya KV, Sumithra JK, 2004. Differential antioxidative responses to water stress among five mulberry (Morus alba L.) cultivars. Environ Exp Bot 55: 33-42. http://dx.doi.org/10.1016/j.envexpbot.2004.01.002

Rougemont M, 2007. Les mycorhizes et l'olivier: Effets sur le développement des plants en pépinière et en verger. Proc Journées Méditerranéennes de l'Olivier, Meknès (Morocco), Oct 22-26. pp: 1-9.

Ruiz-Lozano JM, 2003. Arbuscular mycorrhizal symbiosis and alleviation of osmotic stress. New perspectives for molecular studies. Mycorrhiza 13: 309-317. http://dx.doi.org/10.1007/s00572-003-0237-6

Selvakumar G, Thamizhiniyan P, 2011. The effect of the arbuscular mycorrhizal (AM) fungus Glomus intraradices on the growth and yield of chilli (Capsicum annuum L.) under salinity stress. World Appl Sci J 14 (8): 1209-1214.

Smirnoff N, 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125: 27-58. http://dx.doi.org/10.1111/j.1469-8137.1993.tb03863.x

Soriano-Martin ML, Azcon R, Barea JM, Porras-Soriano A, Marcilla-Goldaracena I, Porras-Piedra A, 2006. Reduction of the juvenile period of new olive plantations through the early application of mycorrhizal fungi. Soil Sci 171: 52-58. http://dx.doi.org/10.1097/01.ss.0000187348.31987.b6

Trouvelot A, Kough J, Gianinazzi-Pearson V, 1986. Mesure du taux de mycorhization VA d'un système radiculaire: Recherche de méthodes d'estimation ayant une signification fonctionnelle. In: Physiological and genetical aspects of mycorrhizae (Gianinazzi-Pearson V, Gianinazzi S, eds). INRA, Paris. pp: 217-221.

Wu QS, Xia RX, 2006. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well watered and water stress conditions. J Plant Physiol 163: 417-425. http://dx.doi.org/10.1016/j.jplph.2005.04.024

Wu QS, Zou YN, Xia RX, 2006. Effects of water stress and arbuscular mycorrhizal fungi on reactive oxygen metabolism and antioxidant production by citrus (Citrus tangerine) roots. Eur J Soil Biol 42: 166-177. http://dx.doi.org/10.1016/j.ejsobi.2005.12.006

Wu QS, Xia RX, Zou YN, 2008. Improved soil structure and citrus growth after inoculation with three arbuscular mycorrhizal fungi under drought stress. Eur J Soil Biol 44: 122-128. http://dx.doi.org/10.1016/j.ejsobi.2007.10.001

Published
2014-06-03
How to Cite
Fouad, M. O., Essahibi, A., Benhiba, L., & Qaddoury, A. (2014). Effectiveness of arbuscular mycorrhizal fungi in the protection of olive plants against oxidative stress induced by drought. Spanish Journal of Agricultural Research, 12(3), 763-771. https://doi.org/10.5424/sjar/2014123-4815
Section
Plant physiology