Assessment of the viability of using saline reclaimed water in grapefruit in medium to long term

  • Cristina Romero-Trigueros Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Pedro A. Nortes Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Francisco Pedrero Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Oussama Mounzer Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Juan J. Alarcón Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Jose M. Bayona Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
  • Emilio Nicolás Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)
Keywords: chlorophyll, gas exchange measurements, irrigation, phytotoxic elements, plant water status, saline reclaimed water, yield

Abstract

Citrus trees are strongly affected by salinity, especially in countries where irrigation is required as a semi-arid Mediterranean agronomic region. The aims of the study were i) to identify the best reliable plant-based water status indicator for field grown grapefruit trees irrigated with saline reclaimed water during five years of cultivation by measuring seasonal changes in physiological parameters (i.e. gas exchange and stem water potential measurements), leaf structural traits (i.e. leaf chlorophyll content, area-based leaf nitrogen and area-based dry mass), phytotoxic elements and yield; ii) to estimate phytotoxicity thresholds at leaf level. Our results showed that the chlorophyll content was the parameter with the highest number of measures with significant differences (p≤0.05, ANOVA) between trees irrigated with reclaimed water and control trees throughout growing stages. Moreover, Chl a increased linearly with area-based leaf nitrogen (R2=0.63; p<0.001) and area-based dry mass (R2=0.64; p<0.001). We also determined the salt-induced phytotoxicity thresholds at which a reduction in yields occurs; these levels were Na: 0.1 g/100 g, Cl: 0.6 g/100 gand B: 100 ppm. In conclusion, we revealed the importance of leaf chlorophyll measurements as a significance diagnostic indicator of salt stress on field grown grapefruit trees. This parameter was also related to plant-based water status indicators such as stem water potential, stomatal conductance and net photosynthesis. Additionally, a salt accumulation potential at leaf level was shown, leading to possible risk in crop sustainability in the medium to long term.

Downloads

Download data is not yet available.

Author Biographies

Cristina Romero-Trigueros, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)



Oussama Mounzer, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)


Jose M. Bayona, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Riego. P.O. Box 164, 30100 Espinardo (Murcia)

References

References

Albrigo G, Syvertsen JP, Dunlop JM, 2005. Growth conditions, crop load and fruit size affect sheepnosing in grapefruit. Proc Fla State Hort Soc 118: 28-34.

Allen RG, Pereira LS, Raes D, Smith M, 1998. Crop evapotranspiration-guidelines for computing crop water requirements. FAO Irrig Drain 56: 15-27.

Almansa MS, Hernández JA, Jiménez A, Botella MA, Sevilla F, 2002. Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonum in different rootstock-scion combinations. Biol Plantarum 45: 545-549. http://dx.doi.org/10.1023/A:1022373025148

Angelakis AN, Bontoux L, Lazarova V, 2003. Challenges and prospectives for water recycling and reuse in EU countries. Water Supply 3(4): 59-68.

Anjum MA, 2008. Effect of NaCl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. Acta Physiol Plant 30: 43-52. http://dx.doi.org/10.1007/s11738-007-0089-3

Arbona A, López-Climent MF, Pérez-Clemente RM, Gómez-Cadenas A, 2009. Maintenance of a high photosynthetic performance is linked to flooding tolerance in citrus. Environ Exp Bot 66: 135-142. http://dx.doi.org/10.1016/j.envexpbot.2008.12.011

Bondada B, Syvertsen J, 2003. Leaf chlorophyll, net gas exchange and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol 23: 553-559. http://dx.doi.org/10.1093/treephys/23.8.553

Boyer JS, 2001. Growth-induced water potentials originate from wall yielding during growth. J Exp Bot 52: 1483-1488. http://dx.doi.org/10.1093/jexbot/52.360.1483

Brumos J, Colmenero-Flores A, Conesa P, Izquierdo P, Sánchez G, Iglesias MF, López-Climent A, Gómez-Cadenas A, Talón M, 2009. Membrane transporters and carbon metabolism implicated in chloride homeostasis differentiate salt stress responses in tolerant and sensitive Citrus rootstocks. Funct Integr Genomics 9: 293-309. http://dx.doi.org/10.1007/s10142-008-0107-6

Calderón Z, Rodríguez A, Becerril R, Livera M, Colinas L, 1997. Fertilización foliar nitrogenada en la fotosíntesis y el desarrollo de durazno en producción forzada. Agrociencia [Mexico] 31: 291-296.

Carter GA, Spiering BA, 2002. Optical properties of intact leaves for estimating chlorophyll concentration. J Environ Quality 31: 1424-1432. http://dx.doi.org/10.2134/jeq2002.1424

Castillo G, 1996. Fluctuación anual de carbohidratos y nutrimentos en relación al amarre de frutos de aguacate (Persea americana Mill) cv Colín V-33. Doctoral Thesis. Colegio de Postgraduados. Montecillo, Texcoco, Mexico.

Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103: 551-560. http://dx.doi.org/10.1093/aob/mcn125

Chica EJ, Albrigo LG, 2013. Expression of flower promoting genes in sweet orange during floral inductive water deficits. J Am Soc Hortic Sci 138(2): 88–94.

Daughtry C, Walthall CL, Kim MS, Brown de Colstoun E, McMurtrey JE, 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens Environ 74: 229-239. http://dx.doi.org/10.1016/S0034-4257(00)00113-9

Díaz-Espejo A, Nicolás E, Fernández JE, 2007. Seasonal evolution of diffusional limitations and photosynthetic capacity in olive under drought. Plant Cell Environ 30: 922–933. http://dx.doi.org/10.1111/j.1365-3040.2007.001686.x

Egea G, González-Real MM, Baille A, Nortes PA, Sánchez-Bel P, Domingo R, 2009. The effects of contrasted deficit irrigation strategies on the fruit growth and kernel quality of mature almond trees. Agric Water Manage 96: 1605-1614. http://dx.doi.org/10.1016/j.agwat.2009.06.017

Egea G. González-Real MM, Baille A, Nortes PA, Conesa M, Ruiz-Salleres I, 2012. Effects of water stress on irradiance acclimation of leaf traits in almond trees. Tree Physiol 32: 450-463. http://dx.doi.org/10.1093/treephys/tps016

Embleton TW, Jones WW, Labanauskas CK, Reuther W, 1973. Leaf analysis as diagnostic tool and a guide to fertilization. In: The citrus industry (Reuther W, ed), Vol 2, 2nd ed., Univ. of Calif., Berkeley (USA). pp: 184-210 and Appendix I, pp: 447-495.

Evans JR, Poorter H, 2001. Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area a nitrogen partitioning in maximizing carbon again. Plant Cell Environ 24(8): 755-767. http://dx.doi.org/10.1046/j.1365-3040.2001.00724.x

Fereres E, Goldhamer DA, 1990. Deciduous fruit and nut trees. In: Irrigation of agricultural crops (Stewart BA & Nielsen DR, Eds.). Am Soc Agron, Madison, WI, USA. Monograph 30, pp: 987-1017.

Flexas J, Bota J, Escalona JM, Sampol B, Medrano H, 2002. Effects of drought on photosynthesis and electron transport rate regulation in grapevine. Plant Cell Environ 22: 39-48. http://dx.doi.org/10.1046/j.1365-3040.1999.00371.x

Flowers TJ, 2004. Improving crop salt tolerance. J Exp Bot 55: 307-319. http://dx.doi.org/10.1093/jxb/erh003

García-Sánchez F, Syvertsen JP, 2006. Salinity reduces growth, gas exchange, chlorophyll and nutrient concentrations in diploid sour orange and related allotetraploid somatic hybrids. J Hort Sci Biotechnol 77: 379-386.

García-Sánchez F, Syvertsen JP, Martínez V, Melgar JC, 2002. Salinity tolerance of ´Valencia´ orange tree on rootstocks with contrasting salt tolerance is not improved by moderate shade. J Exp Bot 57: 3697-3706. http://dx.doi.org/10.1093/jxb/erl121

García-Tejero I, Jiménez-Bocanegra JA, Martínez G, Romero R, Durán-Zuazo VH, Muriel-Fernández JL, 2010. Positive impact of regulated deficit irrigation on yield and fruit quality in a commercial citrus orchard. Agric Water Manage 97: 614-622. http://dx.doi.org/10.1016/j.agwat.2009.12.005

Gimeno V, Simón I, Nieves M, Martínez V, Cámara-Zapata JM, García AL, García-Sánchez F, 2012. The physiological and nutritional responses to an excess of boron by Verna lemon trees that were grafted on four contrasting rootstocks. Trees 26: 1513-1526. http://dx.doi.org/10.1007/s00468-012-0724-5

Gomes MMA, Lagoa AMMA, Medina CL, Machado EC, Machado MA, 2004. Interactions between leaf water potential, stomatal conductance and abscisic acid content of orange trees submitted to drought stress. Braz J Plant Physiol 13(3): 155-161.

González-Altozano P, Castel JR, 2000. Effects of regulated deficit irrigation on 'Clementina de Nules' citrus trees growth, yield and fruit quality. Acta Hortic 537(2): 749-758.

Grattan S, 2013. Evaluation of the impact of boron on citrus orchards in Riverside country. Report submitted to Riverside County Water Task Force, 78 pp.

Hussain S, Luro F, Costantino G, Ollitrault P, Morillon R, 2012. Physiological analysis of salt stress behavior of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. South Afr J Bot 81: 103-112. http://dx.doi.org/10.1016/j.sajb.2012.06.004

Iglesias D, Cercós M, Colmenero-Flores J, Naranjo M, Ríos G, Carrera E, Ruiz-Rivero O, Lliso I, Morillon R, Tadel F, 2007. Physiology of citrus fruiting. Braz J Plant Physiol 19: 333-362. http://dx.doi.org/10.1590/S1677-04202007000400006

Inskeep WP, Bloom PR, 1985. Extinction coefficients of chlorophyll a and b in N, N-dimethylformamide and 80% acetone. Plant Physiol 60: 606-608.

Jifon JL, Syvertsen JP, 2003. Moderate shade can increase net gas exchange and reduce photoinhibition in citrus leaves. Tree Physiol 23: 119-127. http://dx.doi.org/10.1093/treephys/23.2.119

Labanauskas CK, Bitters WP, 1974. The Influence of rootstocks and interstocks on nutrient concentration in Valencia oranges leaves. Amer Soc Hort Sci 99(I): 32-33.

Levine AD, Asano T, 2004. Recovering sustainable water from wastewater. Environ Sci Technol 38(11): 201A-208A. http://dx.doi.org/10.1021/es040504n

Levy Y, Syvertsen JP, 2004. Irrigation water quality and salinity effects in citrus trees. Hortic Rev 30: 37-82.

Lloyd J, Syvertsen JP, Kriedemann PE, 1987. Salinity effects on leaf water relations and gas exchange of ´Valencia´ orange, Citrus sinensis (L.) Osbeck, on rootstocks with different salt exclusion characteristics. Aust J Plant Physiol 14: 605-617. http://dx.doi.org/10.1071/PP9870605

Maas EV, 1993. Salinity and citriculture. Tree Physiol 12: 195-216. http://dx.doi.org/10.1093/treephys/12.2.195

Maas EV, Grattan SR, 1999. Crop yields as affected by salinity. In: Agricultural drainage (Skaggs RW & van Schilfgaarde J, eds). Agron Monog No. 38, ASA, CSSA, SSA, Madison, WI, USA. pp: 55-108.

MARM, 2009. Estudio de la cadena de valor y formación de precios del sector cítricos. Observatorio de precios de los alimentos. Campaña 2009-2010. Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Spain.

Melgar JC, 2008. Leaf gas exchange, water relations, nutrient content and growth in citrus and olive seedlings under salinity. Biol Plant 52: 385-390. http://dx.doi.org/10.1007/s10535-008-0081-9

Mirás-Ávalos JM, Egea G, Nicolás E, 2011. QualiTree, a virtual fruit tree to study the management of fruit quality. II. Parameterization for peach, analysis of growth-related processes and agronomic scenarios. Trees Struc Funct 25: 785-799. http://dx.doi.org/10.1007/s00468-011-0555-9

Montoliu A, López-Climent MF, Arbona V, Pérez-Clemente RM, Gómez-Cadenas A, 2009. A novel in vitro tissue culture approach to study salt stress responses in citrus. Plant Growth Regul 59: 179-187. http://dx.doi.org/10.1007/s10725-009-9401-0

Mouhaya W, Allario T, Brumos J, Andres F, Froelicher Y, Luro L, 2010. Sensitivity to high salinity in tetraploid citrus seedlings increases with water availability and correlates with expression of candidate genes. Funct Plant Biol 37: 674-685. http://dx.doi.org/10.1071/FP10035

Mounzer O, Pedrero F, Nortes PA, Bayona JM, Nicolás E, Alarcón JJ, 2013. Transient soil salinity under the combined effect of reclaimed water and regulated deficit drip irrigation of Mandarin trees. Agric Water Manage 120: 23-29. http://dx.doi.org/10.1016/j.agwat.2012.10.014

Murkute AA, Sharma S, Sing SK, 2005. Citrus in terms of soil and water salinity: a review. J Sci Ind Res 64: 393-402.

Navarro JM, García-Olmos B, Andujar S, Rodríguez-Morán M, Moreno M, Porras I, 2011. Effects of calcium on growth and nutritional state of citrus seedlings under NaCl stress. Acta Hort (ISHS) 922: 55-60.

Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Patakas A, Giannakoula A, 2004a. Boron toxicity in 'Clementine' mandarin plants grafted on two rootstocks. Plant Sci 166: 539-547. http://dx.doi.org/10.1016/j.plantsci.2003.10.027

Papadakis IE, Dimassi KN, Bosabalidis AM, Therios IN, Giannakoula A, 2004b. Effects of B excess on some physiological and anatomical parameters of 'Navelina' orange plants grafted on two rootstocks. Environ Exp Bot 51: 247-257. http://dx.doi.org/10.1016/j.envexpbot.2003.11.004

Paranychianakis NV, Aggelides S, Angelakis AN, 2004. Influence of rootstock, irrigation level and recycled water on growth and yield of Soultamina grapevines. Agric Water Manage 69: 13-27. http://dx.doi.org/10.1016/j.agwat.2004.03.012

Pedrero F, Alarcón JJ, Nicolás E, Mounzer O, 2013. Influence of saline irrigation reclaimed water on young grapefruits. Desalt Water Treat 51: 10-12.

Pereira F, Alves LV, Gil LF, 2010. Removal of Zn2+ from aqueous single metal solutions and electroplating wastewater with wood sawdust and sugarcane bagasse modified with EDTA dianhydride (EDTAD). J Hazard Water 176(1-3): 856-863. http://dx.doi.org/10.1016/j.jhazmat.2009.11.115

Pérez-Pérez JG, Romero P, Navarro JM, Botia P, 2008. Response of sweet orange cv 'Lane late' to deficit irrigation in two rootstocks. I: water relations, leaf gas exchange and vegetative growth. Irrig Sci 26: 415-425. http://dx.doi.org/10.1007/s00271-008-0106-3

Reboll V, Cerezo M, Riog A, Flors V, Lapena L, García-Agustin P, 2000. Influence of wastewater vs groundwater on young citrus trees. J Sci Food Agric 80: 1441-1446. 3.0.CO;2-S" target="_blank">http://dx.doi.org/10.1002/1097-0010(200008)80:10<1441::AID-JSFA664>3.0.CO;2-S

Reyes-Santamaría MI, Villegas-Monter A, Colinas-León MT, Calderón-Zavala G, 2000. Leaf specific weigth, and protein and chorophyll content in orange and tangerine leaves. Agrociencia 34(1): 49-55.

Syvertsen JP, Melgar JC, 2010. Salinity tolerance and leaf water use efficiency in citrus. J Amer Soc Hort Sci 135(1): 33-39.

Walker RR, 1986. Sodium exclusion and potassium-sodium selectivity in salt treated trifoliate orange (Poncirus trifoliate) and Cleopatra mandarin (Citrus reticulate) plants. Aust J Plant Physiol 13: 293-303. http://dx.doi.org/10.1071/PP9860293

Wu C, Niu Z, Tang Q, Huang W, 2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agric For Meteorol 148: 1230-1241. http://dx.doi.org/10.1016/j.agrformet.2008.03.005

Yasumura Y, Hikosaka K, Hirose T, 2006. Seasonal changes in photosynthesis, nitrogen content and nitrogen partitioning in Lindera umbellata leaves grown in high or low irradiance. Tree Physiol 26: 1315-1323. http://dx.doi.org/10.1093/treephys/26.10.1315

Yermiyahu U, Ben-Gal A, Keren R, Reid RJ, 2008. Combined effect of salinity and excess boron on plant growth and yield. Plant Soil 304: 73–87. http://dx.doi.org/10.1007/s11104-007-9522-z

Zarco-Tejada PJ, Miller JR, Morales A, Berjón A, Agüera J, 2004. Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sens Environ 90(4): 463-476. http://dx.doi.org/10.1016/j.rse.2004.01.017

Published
2014-11-13
How to Cite
Romero-Trigueros, C., Nortes, P. A., Pedrero, F., Mounzer, O., Alarcón, J. J., Bayona, J. M., & Nicolás, E. (2014). Assessment of the viability of using saline reclaimed water in grapefruit in medium to long term. Spanish Journal of Agricultural Research, 12(4), 1137-1148. https://doi.org/10.5424/sjar/2014124-5495
Section
Plant physiology