Biological water contamination in some cattle production fields of Argentina subjected to runoff and erosion

Celio I. Chagas, Filipe B. Kraemer, Oscar J. Santanatoglia, Marta Paz, Juan Moretton

Abstract


Grain production has displaced livestock to marginal lands in most of the productive regions in Argentina since 1990. In the fertile Rolling Pampa region, extensive cattle production has been concentrated in lowlands subjected to flooding, salt excess, erosion and sedimentation processes but also in some feedlots recently located in sloping arable lands prone to soil erosion. We studied the concentration of microbiological contamination indicators in runoff water and sediments accumulated in depressions along the tributary network from these lands devoted to cattle production. The aims of this work were: (i) to gather a reliable set of data from different monitoring periods and scales, (ii) to search for simple and sensible variables to be used as indicators for surface water quality advising purposes and (iii) to corroborate previous biological contamination conceptual models for this region. Concentration of pollution indicators in these ponds was related to mean stocking rates from nearby fields and proved to depend significantly on the accumulated water and sediments. Viable mesophiles and total coliforms were found mainly attached to large sediments rather than in the runoff water phase. Seasonal sampling showed that the time period between the last significant runoff event and each sampling date regarding enterococci proved to be a sensible variable for predicting contamination. Enterococci concentration tended to increase gradually until the next extraordinary runoff event washed away contaminants. The mentioned relationship may be useful for designing early warning surface water contamination programs regarding enterococci dynamics and other related microbial pollutants as well.

Keywords


watershed; runoff-sediment; bovine; biological pollution

Full Text:

PDF

References


APHA-AWWA-WEF, 2012. Standard methods for the examination of water and wastewater, 22nd ed. Am Public Health Assoc, Am Water Works Assoc, Water Environ Feder, Washington DC, USA.

Bai S, Lung WS, 2005. Modeling sediment impact on the transport of fecal bacteria. Water Res 39: 5232-5240. http://dx.doi.org/10.1016/j.watres.2005.10.013

Bujan A, Santanatoglia OJ, Chagas CI, Massobrio M, Castiglioni M, Ya-ez M, Ciallella H, Fernandez J, 2003. Soil erosion evaluation in a small basin through the use of 137Cs technique. Soil Till Res 69(1-2): 127-137. http://dx.doi.org/10.1016/S0167-1987(02)00134-4

Chagas CI, 2007. Quality and contamination of surface water used as a resource for animal drinking water in a representative basin from the Rolling Pampa. Doctoral thesis, College of Veterinary Sciences, University of Buenos Aires, Argentina. 186 pp.

Chagas CI, Moretton J, Santanatoglia OJ, Paz M, Muzio H, De Siervi M, Castiglioni MG, 2006. Indicators of biological contamination associated with water erosion in a basin belonging to the Rolling Pampa, Argentina. Ciencia del Suelo [Argentina] 24: 21-27.

Chagas CI, Piazza MV, De Siervi M, Santanatoglia OJ, Moretton J, Paz M, Castiglioni MG, Irurtia C, 2007. Calidad de agua de escorrentía superficial en sistemas ganaderos extensivos e intensivos de Argentina. Agrochimica LI (2-3): 130-136.

Chagas CI, Santanatoglia OJ, Castiglioni MG, Massobrio MJ, Buján A, Irurtia C, 2008. Runoff curve number for a Rolling Pampa watershed under conventional and no-tillage. Ciencia del Suelo [Argentina] 26: 71-79.

Chagas CI, Santanatoglia OJ, Moretton J, Paz M, Kraemer FB, 2010. Surface movement of cattle-borne biological contaminants in the drainage network of a basin of the Rolling Pampas. Ciencia del Suelo [Argentina] 28: 23-31.

Chagas CI, Kraemer FB, Utin S, Irurtia C, Santanatoglia OJ, 2011. Influencia de las propiedades edáficas y la posición en el paisaje sobre la respuesta hidrológica de suelos pertenecientes a una cuenca de la Pampa Ondulada. Revista Cuadernos del CURIHAM [Argentina] 17: 15-24.

Cheremisinoff NP, 2002. Handbook of water and wastewater treatment technologies. Butterworth-Heinemann, 636 pp.

Cisneros J, Cholaky C, Cantero GA, González J, Reynero M, Diez A, Bergesio L, 2012. Erosión hídrica: principios y técnicas de manejo, 1ª edición. Río Cuarto: UniRío Editora, Universidad Nacional de Rio Cuarto, Argentina. 286 pp.

Emiliani F, Lajmanovich R, Acosta MA, Bonetto S, 1999. Variaciones temporales y espaciales de coliformes y de Escherichia coli en aguas recreativas fluviales (Río Salado, Santa Fé, Argentina). Relación con los estándares de calidad. Revista Argentina de Microbiología 31: 142-156.

INTA, 1973. Carta de Suelos. Hoja 3360-33. National Institute of Agronomical Technology, Pérez Millán, Buenos Aires, Argentina. E=1:50.000. 45 pp.

INTA, 2014. Meteorological information. National Institute of Agronomical Technology, Experimental Station of San Pedro. Available in http://inta.gob.ar/documentos/informacion-agrometeorologica-eea-san-pedro/view.

Kraemer FB, Chagas CI, Cosentino DJ, Paz M, Moretton JA, 2011a. Soil texture as a regulating factor of Escherichia coli adsorption in a Rolling Pampa basin (Argentina). Revista Argentina de Microbiología 43: 87-93.

Kraemer FB, Chagas CI, Irurtia C, Garibaldi LA, 2011b. Bacterial retention in three soils of the Rolling Pampa, Argentina, under simulated rainfall. J Soil Sci Environ Manage 2(11): 341-353.

Kraemer FB, Chagas CI, Marré G, Palacín EA, Santanatoglia OJ, 2013a. Cattle production displacement by annual cropping in a basin belonging to the Rolling Pampa region. Effects on runoff and soil erosion. Ciencia del Suelo [Argentina] 31: 83-92.

Kraemer FB, Chagas CI, Cosentino DJ, Garibaldi LA, 2013b. Adsorption and affinity of Escherichia coli to different aggregate sizes of a silty clay soil. Int J Sedim Res 28: 535-543. http://dx.doi.org/10.1016/S1001-6279(14)60011-1

Nagels JW, Davies-Colley RJ, Donnison AM, Muirhead RW, 2002. Fecal contamination over flood events in a pastoral agricultural stream in New Zealand. Water Sci Technol 45 (12): 45-52.

Nearing MA, Lane LJ, Alberts EE, Laflen JM, 1990. Prediction technology for soil erosion by water: status and research needs. Soil Sci Soc Am J 54: 1702-1711. http://dx.doi.org/10.2136/sssaj1990.03615995005400060033x

Ongley ED, 1996. Control of water pollution from agriculture. FAO Irrig Drain Paper N° 55, Rome (Italy). Land and Water Development Div. 101 pp.

SAGPyA, 2009. Agricultura sustentable. Secretaría de Ganadería, Agricultura, Pesca y Alimentación, Argentina. Available in www.sagpya.mecon.gov.ar.

SAGyP-CFA, 1995. El deterioro de las tierras en la República Argentina. Secretaría de Agricultura, Ganadería y Pesca, and Consejo Federal Agropecuario. Buenos Aires.

Sherer BM, Miner JR, Moore JA, Buckhouse JC, 1992. Indicator bacterial survival in stream sediments. J Environ Qual 21: 591-595. http://dx.doi.org/10.2134/jeq1992.00472425002100040011x

Snedecor GW, Cochran WG, 1980. Statistical methods, 7th Ed. Iowa University Press.

Solbrig OT, 1997. Towards a sustainable Pampa agriculture: past performance and prospective analysis. Working Papers on Latin America, Paper No. 96/97-6. The David Rockefeller Center for Latin American Studies.

Tian YQ, Gong P, Radke JD, Scarbourough J, 2002. Spatial and temporal modeling of microbial contamination on grazing farmlands. J Environ Qual 31: 860-869. http://dx.doi.org/10.2134/jeq2002.0860

WHO, 1995. Guidelines for drinking-water quality, Vol. 1, Recommendations. World Health Organization, Geneva.

Wilcock RJ, Magels JW, Rodda HJE, O’Connor MB, Thorrold BS, Barnett JW, 1999. Water quality of lowland stream in a New Zealand dairy farming catchment. N Z J Mar Freshwater Res 33: 683-696. http://dx.doi.org/10.1080/00288330.1999.9516911




DOI: 10.5424/sjar/2014124-5950