Evaluation of olive flowering at low latitude sites in Argentina using a chilling requirement model

Vanesa E. Aybar, J. Paulo De Melo-Abreu, Peter S. Searles, Angel C. Matias, Carmen Del Rio, Juan M. Caballero, M. Cecilia Rousseaux

Abstract


Olive production has expanded significantly from the Mediterranean Basin into the New World over the last two decades. In some cases, cultivars of European origin have been introduced at a large commercial scale with little previous evaluation of potential productivity. The objective of this study was to evaluate whether a temperature-driven simulation model developed in the Mediterranean Basin to predict normal flowering occurrence and flowering date using cultivar-specific thermal requirements was suitable for the low latitude areas of Northwest Argentina. The model was validated at eight sites over several years and a wide elevation range (350–1200 m above mean sea level) for three cultivars (‘Arbequina’, ‘Frantoio’, ‘Leccino’) with potentially different chilling requirements. In ‘Arbequina’, normal flowering was observed at almost all sites and in all years, while normal flowering events in ‘Frantoio’ and ‘Leccino’ were uncommon. The model successfully predicted if flowering would be normal in 92% and 83% of the cases in ‘Arbequina’ and ‘Frantoio’, respectively, but was somewhat less successful in ‘Leccino’ (61%). When flowering occurred, the predicted flowering date was within ± 7 days of the observed date in 71% of the cases. Overall, the model results indicate that cultivar-specific simulation models may be used as an approximate tool to predict whether individual cultivars will be successful in new growing areas. In Northwest Argentina, the model could be used to identify cultivars to replace ‘Frantoio’ and ‘Leccino’ and to simulate global warming scenarios.


Keywords


chilling units; dormancy; Olea europaea; temperature; thermal time

Full Text:

PDF HTML XML

References


Aguilera F, Ruiz L, Fornaciari M, Romano B, Galán C, Oteros J, Ben Dhiab A, Msallem M, Orlandi F, 2014. Heat accumulation period in the Mediterranean region: Phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometeorol 58: 867-876. http://dx.doi.org/10.1007/s00484-013-0666-7

Alcalá AR, Barranco D, 1992. Prediction of flowering time in olive for the Cordoba Olive Collection. HortSci 27: 1205-1207.

Aybar, V, 2010. Floración en olivo (Olea europaea L.): evaluación del ajuste de un modelo predictivo para las condiciones del Chaco Árido Argentino y utilización de hormonas exógenas. University of Buenos Aires. MS Thesis.

Ayerza, R, Sibbett, S, 2001. Thermal adaptability of olive (Olea europaea L.) to the Arid Chaco of Argentina. Agric Ecosys Environ 84: 277-285. http://dx.doi.org/10.1016/S0167-8809(00)00260-7

Badr, SA, Hartmann HT, 1972. Flowering response of the olive (Olea europaea L.) to certain growth regulators applied under inductive and noninductive environments. Bot Gaz 133: 387-392. http://dx.doi.org/10.1086/336659

Bandelj D, Jakše J, Javornik B, 2004. Assessment of genetic variability of olive varieties by microsatellite and AFLP markers. Euphitica 136: 96-102. http://dx.doi.org/10.1023/B:EUPH.0000019552.42066.10

Bongi G, Palliotti A, 1994. Olive. In: Handbook of environmental physiology of fruit crops (Schaffer B & Anderson PC,eds.). CRC Press, Boca Raton, FL, USA. pp: 165-187.

Bonhomme R, 2000. Bases and limits to using 'degree day' units. Europ J Agron 13: 1-10. http://dx.doi.org/10.1016/S1161-0301(00)00058-7

Caballero JM, Del Río C, 2008. The Olive World Germplasm Bank of Spain. Acta Hortic 791: 31-38.

Cesaraccio C, Spano D, Snyder RL, Duce P, 2004. Chilling and forcing model to predict bud-burst of crop and forest species. Agric For Meteorol 126: 1-13. http://dx.doi.org/10.1016/j.agrformet.2004.03.002

De Melo-Abreu JP, Barranco D, Cordeiro AM, Tous J, Rogado BM, Villalobos FJ, 2004. Modelling olive flowering date using chilling for dormancy release and thermal time. Agric For Meteorol 125: 121-127.

Denney JO, McEachern GR, 1983. An analysis of several climatic temperature variables dealing with olive reproduction. J Am Soc Hort Sci 108: 578-581.

Denney JO, McEachern R, Griffiths JF, 1985. Modelling the thermal adaptability of the olive (Olea europaea L.) in Texas. Agric For Meteorol 35: 309-327. http://dx.doi.org/10.1016/0168-1923(85)90092-9

Fernández-Escobar R, Rallo L, 1981. Influencia de la polinización cruzada en el cuajado de frutos de cultivares de olivo (Olea europaea L.) ITEA 45: 51-58.

Freese F. 1960. Testing accuracy. For Sci 6: 139-145.

Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz de la Guardia C, Trigo MM, 2005. Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49: 184-188. http://dx.doi.org/10.1007/s00484-004-0223-5

García-Mozo H, Mestre A, Galán C, 2010. Phenological trends in southern Spain: A response to climate change. Agric For Meteorol 150: 575–580. http://dx.doi.org/10.1016/j.agrformet.2010.01.023

Gómez del Campo M, Morales-Sillero A, Vita Serman F, Rousseaux MC, Searles PS, 2010. Olive growing in the arid valleys of Northwest Argentina (provinces of Catamarca, La Rioja and San Juan). Olivae 114: 43-65.

Grossman YL, DeJong TM, 1994. PEACH: A simulation model of reproductive and vegetative growth in peach trees. Tree Physiol 14: 329-345. http://dx.doi.org/10.1093/treephys/14.4.329

Hartmann HT, 1953. Effect of winter chilling on fruitfulness and vegetative growth in the olive. Proc Am Soc Hortic Sci 62: 184-190.

Hartmann HT, Porlingis I, 1957. Effect of different amounts of winter chilling on fruitfulness of several olive varieties. Bot Gaz 119: 102-104. http://dx.doi.org/10.1086/335969

Malik NSA, Pérez JL, 2011. The effect of high temperature interruptions during inductive period on the extent of flowering and on metabolic responses in olives (Olea europaea L.). Sci Hortic 129: 207-212. http://dx.doi.org/10.1016/j.scienta.2011.03.028

Motisi A, Fontana G, Zerilli V, Drago A, Dimino G, Ferrigno G, 2008. Development of an olive phenological model in relation to air temperature. Acta Hortic 803: 167-174.

Nelder JA, Mead R, 1965. A simplex method for function minimization. Comput J 7: 308-313. http://dx.doi.org/10.1093/comjnl/7.4.308

Orlandi F, Lanari D, Romano B, Fornaciari M, 2006. New model to predict the timing of olive (Olea europaea) flowering: A case study in central Italy. New Zeal J Crop Hortic Sci 34: 93-99. http://dx.doi.org/10.1080/01140671.2006.9514392

Orlandi F, Sgromo C, Bonofiglio T, Ruga L, Romano B, Fornaciari M, 2010a. Spring influences on olive flowering and threshold temperatures related to reproductive structure formation. HortSci 45: 1052-1057.

Orlandi F, Msallem M, Bonofiglio T, Ben Dhiab A, Sgromo C, Romano B, Fornaciari M, 2010b. Relationship between olive flowering and latitude in two Mediterranean countries (Italy and Tunisia). Theor Appl Climatol 102: 265-273. http://dx.doi.org/10.1007/s00704-009-0239-1

Osborne CP, Chuine I, Viner D, Woodward FI, 2000. Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean. Plant Cell Environ 23: 701-710. http://dx.doi.org/10.1046/j.1365-3040.2000.00584.x

Oteros J, García-Mozo H, Vázquez L, Mestre A, Domínguez-Vilches E, Galán C, 2013. Modelling olive phenological response to weather and topography. Agric Ecosyst Environ 179: 62-68. http://dx.doi.org/10.1016/j.agee.2013.07.008

Pérez-López D, Ribas F, Moriana A, Rapoport HF, De Juan A, 2008. Influence of temperature on the growth and development of olive (Olea europaea L) trees. J Hortic Sci Biotechnol 83: 171-176.

Pierantozzi P, Torres M, Lavee S, Maestri D, 2014. Vegetative and reproductive responses, oil yield and composition from olive trees (Olea europaea) under contrasting water availability during the dry winter-spring period in central Argentina. Ann Appl Biol 164: 116-127. http://dx.doi.org/10.1111/aab.12086

Ponti L, Gutierrez AP, Ruti PM, Dell'Aquila A, 2014. Fine-scale ecological and economic assessment of climate change on olive in the Mediterranean Basin reveals winners and losers. Proc Natl Acad Sci 111: 5598-5603. http://dx.doi.org/10.1073/pnas.1314437111

Ramírez-Santa Pau M, Navarro C, Rallo L, 2002. Relation among flowering, fruitfulness and crop in ´Manzanilla de Sevilla´ olives. Acta Hortic 586: 317-319.

Sanz-Cortés F, Martínez-Calvo J, Badenes ML, Bleiholder H, Hack H, Llácer G, Meier U, 2002. Phenological growth stages of olive trees (Olea europaea). Ann Appl Biol 140: 151-157. http://dx.doi.org/10.1111/j.1744-7348.2002.tb00167.x

Searles PS, Agüero-Alcarás M, Rousseaux MC, 2011. El consumo de agua por el cultivo de olivo (Olea europaea L.) en el noroeste de Argentina: una comparación con la Cuenca Mediterránea. Ecol Austral 21: 15-28.

Tanasijevic L, Todorovic M, Pereira LS, Pizzigalli C, Lionello P, 2014. Impacts of climate change on olive crop evapotranspiration and irrigation requirements in the Mediterranean region. Agric Water Manage 144: 54-68. http://dx.doi.org/10.1016/j.agwat.2014.05.019

Trujillo I, Ojeda MA, Urdiroz NM, Potter D, Barranco D, Rallo L, Muñoz Diez C, 2014. Identification of the Worldwide Olive Germplasm Bank of Córdoba (Spain) using SSR and morphological markers. Tree Genet Genomes 10:141-155. http://dx.doi.org/10.1007/s11295-013-0671-3

Wilmott CJ, Ackleson SG, Davis RE, Feddema JJ, Klink KM, Legates DR, O'Donnell J, Rowe CM, 1985. Statistics for the evaluation and comparison of models. J Geophys Res 90: 8995-9005. http://dx.doi.org/10.1029/JC090iC05p08995




DOI: 10.5424/sjar/2015131-6375