Description of the airflow produced by an air-assisted sprayer during pesticide applications to citrus

  • Ramon Salcedo Centro de Agroingeniería, IVIA. Ctra. Moncada-Náquera km. 4.5; 46113-Moncada, Valencia
  • Cruz Garcera Centro de Agroingeniería, IVIA. Ctra. Moncada-Náquera km. 4.5; 46113-Moncada, Valencia
  • Rafael Granell Centro de Agroingeniería, IVIA. Ctra. Moncada-Náquera km. 4.5; 46113-Moncada, Valencia
  • Enrique Molto Centro de Agroingeniería, IVIA. Ctra. Moncada-Náquera km. 4.5; 46113-Moncada, Valencia
  • Patricia Chueca Centro de Agroingeniería, IVIA. Ctra. Moncada-Náquera km. 4.5; 46113-Moncada, Valencia
Keywords: environment, axial fan, drift, risk, CFD, Citrus sinensis

Abstract

Atmospheric drift of plant protection products is considered a major source of air pollution during pesticide applications. Citrus protection against pests and diseases usually requires application of these products using air-blast sprayers. Many authors have emphasized the influence of vegetation on the risk of spray drift. The aim of this work was to describe in detail how the airflow from an air-blast sprayer behaves when it reaches citrus trees and, in particular, the effect that the tree canopy has on this flow. Tests were conducted at a commercial citrus orchard with conventional machinery, placed parallel to a row of trees. Air velocity and direction was measured using a 3D ultrasonic anemometer in 225 points situated in three parallel planes perpendicular to the equipment. The stability of the airflow at each measuring point was studied and the mean velocities were graphically represented. Two vortexes, one behind the canopy, and another over the tree, have been deducted and never been reported before. Both may have an important influence on the trajectories of the sprayed droplets and, as a consequence, on the way in which plant protection products are diffused into the atmosphere. Observed turbulence intensities were higher than in similar experiments conducted in other tree crops, which may be attributable to the higher air volume generated by the machinery used for citrus protection and to the higher foliage density of citrus orchards.

Downloads

Download data is not yet available.

References

Abramovich GN, 1963. The theory of turbulent jets. MIT Press, Cambridge, UK.

Balsari P, Marucco P, 2004. Sprayer adjustment and vine canopy parameters affecting spray drift: the Italian experience. Int Conf on Pesticide Application for Drift Management, Waikoloa (USA), Oct 27-29. pp: 109-115.

Belcher SE, Jerram N, Hunt JCR, 2003. Adjustment of a turbulent boundary layer to a canopy of roughness elements. J Fluid Mech 488: 369-398. http://dx.doi.org/10.1017/S0022112003005019

Brazee RD, Fox RD, Reichard DL, Hall FR, 1981. Turbulent jet theory applied to air sprayers. T ASABE 24(2): 266-272. http://dx.doi.org/10.13031/2013.34237

Chueca P, Moltó E, Garcerá C, 2011. Influence of nozzles on mass balance of spray applications in citrus. 11th Int Workshop on Sustainable Plant Protection Techniques in Fruit Growing, Lanxade (France), Jun 8-10.

Cunha J, Chueca P, Garcerá C, Moltó E, 2012. Risk assessment of pesticide spray drift from citrus applications with air-blast sprayers in Spain. Crop Prot 42: 116-123. http://dx.doi.org/10.1016/j.cropro.2012.06.001

Da Silva A, Sinfort C, Tinet C, Pierrat D, Huberson S, 2006. A Lagrangian model for spray behaviour within vine canopies. J Aerosol Sci 37: 658-674. http://dx.doi.org/10.1016/j.jaerosci.2005.05.016

De Moor A, Langenakens J, Jaeken J, 2002. Dynamic air velocity measurements of air-assisted sprayers in relation to static measurements. Aspect Appl Biol 66: 309-322.

De Schampheleire M, Spanoghe P, Brusselmann E, Sonck S, 2007. Risk assessment of pesticide spray drift damage in Belgium. Crop Prot 26: 602-611. http://dx.doi.org/10.1016/j.cropro.2006.05.013

Dekeyser D, Ashenafi TD, Verboven P, Endalew AM, Hendrickx N, Nuyttens D, 2013. Assessment of orchard sprayers using laboratory experiments and computational fluid dynamics modelling. Biosyst Eng 114: 157-169. http://dx.doi.org/10.1016/j.biosystemseng.2012.11.013

Delele MA, De Moor A, Sonck B, Ramon H, Nicolaï BM, Verboven P, 2005. Modelling and validation of the air flow generated by a cross flow air sprayer as affected by travel speed and fan speed. Biosyst Eng 92: 165-174. http://dx.doi.org/10.1016/j.biosystemseng.2005.05.018

Derksen RC, Zhu H, Fox RD, Brazee RD, Krause CR, 2007. Coverage and drift produced by air induction and conventional hydraulic nozzles used for orchard applications. T ASABE 50: 1493-1501. http://dx.doi.org/10.13031/2013.23941

Duga AT, Defraeye T, Hendrickx N, Dekeyser D, Nuyttens D, Nicolaï B, Verboven P, 2013. Sprayer-canopy characterization using field experiments and CFD modelling. 12th Int Workshop on Sustainable Plant Protection Techniques in Fruit Growing, Valencia (Spain), Jul 26-28. pp: 100-102.

Endalew AM, Hertog M, Verboven P, Delele MA, Baetens K, Ramon H, Nicolaï BM, 2006. 3D Orchard canopy architectural modelling for use in airflow and drift predictions. ISHS Acta Hort 718: 67-74.

Endalew AM, Hertog M, Gebrehiwot MG, Baelmans M, Ramon H, Nicolaï BM, Verboven P, 2009. Modelling airflow within model plant canopies using an integrated approach. Comput Electron Agr 66: 9-24. http://dx.doi.org/10.1016/j.compag.2008.11.002

Endalew AM, Debaer C, Rutten N, Vercammen J, Delele MA, Ramon H, Nicolaï BM, Verboven P, 2010a. A new integrated CFD modelling approach towards air-assisted orchard spraying. Part I. Model development and effect of wind speed and direction on sprayer airflow. Comput Electron Agr 71: 128-136. http://dx.doi.org/10.1016/j.compag.2009.11.005

Endalew AM, Debaer C, Rutten N, Vercammen J, Delele M.A, Ramon H, Nicolaï BM, Verboven P, 2010b. A new integrated CFD modelling approach towards air-assisted orchard spraying. Part II. Validation for different sprayer types. Comput Electron Agr 71: 137-147. http://dx.doi.org/10.1016/j.compag.2009.11.007

Endalew AM, Debaer C, Rutten N, Vercammen J, Delele MA, Ramon H, 2011. Modelling the effect of tree foliage on sprayer airflow in orchards. Bound-Layer Meteor 138: 139-162. http://dx.doi.org/10.1007/s10546-010-9544-6

Endalew AM, Dekeyser D, Nuyttens D, Goossens T, Hendrickx N, Duga AT, Nicolaï BM, Verboven P, 2012. Assessment of orchard sprayers using computational fluid dynamics. Aspect Appl Biol 114: 413-420.

Farooq M, Salyani M, 2002. Spray penetration into the citrus tree canopy from two air-carrier sprayers. T ASAE 45(5): 1287-1293. http://dx.doi.org/10.13031/2013.11057

Farooq M, Salyani M, 2004. Modeling of spray penetration and deposition on citrus tree canopies. T ASAE 47(3): 619-627. http://dx.doi.org/10.13031/2013.16091

Finnigan J, Shaw RH, Patton EG, 2009. Turbulence structure above a vegetation canopy. J Fluid Mech 637: 387-424. http://dx.doi.org/10.1017/S0022112009990589

Fox RD, Brazee RD, Svensson SA, Reichard DL, 1992. Air jet velocities from a cross-flow fan sprayer. T ASAE 35(5): 1381-1384. http://dx.doi.org/10.13031/2013.28744

Fox RD, Derksen RC, Zhu H, Brazee RD, Svensson SA, 2008. A history of air-blast sprayer development and future prospects. T ASABE 51(2): 405-410. http://dx.doi.org/10.13031/2013.24375

Garcia-Ramos FJ, Vidal M, Bone A, Malon H, Aguirre J, 2012. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer. Sensors 12(6): 7598-7613. http://dx.doi.org/10.3390/s120607598

Georgiadis T, Dalpane E, Rossi F, Nerozzi F, 1996. Orchard-atmosphere physical exchanges: modelling the canopy aerodynamics. ISHS Acta Hort 416: 177-182.

Gil Y, Sinfort C, 2005. Emission of pesticides to the air during sprayer application: a bibliographic review. Atmos Environ 39: 5183-5193. http://dx.doi.org/10.1016/j.atmosenv.2005.05.019

Hamey PY, 1999. Assessing risk to operators, bystanders, and workers from the use of plant protection products. Proc XI Symposium Pesticide Chemistry, Cremona (Italy), Sept 1-15. pp: 619-631.

Hetherington MH, 1997. Measurement of the air flow characteristics of agricultural air carrier sprayer. Dissertation. Department of Agricultural Engineering, Michigan Stat Univ, USA.

Hofman V, Solseng E, 2001. Reducing spray drift. Publication AE-1210. North Dakota Stat Univ Ext Serv, Fargo (ND, USA). Available at http://www.ag.ndsu.edu/pubs/ageng/machine/ae1210.pdf [accessed 20/06/2014].

ISO, 2005. ISO/FDIS 22866. Equipment for crop protection. Methods for the field measurement of spray drift. International Standards Organization, Geneva (Switzerland).

Jong FMW, Snoo GR, van de Zande JC, 2008. Estimated nationwide effects of pesticide spray drift on terrestrial habitats in the Netherlands. J Environ Manage 86: 721-730. http://dx.doi.org/10.1016/j.jenvman.2006.12.031

Juste F, Sanchez S, Ibañez R, Val L, Garcia C, 1990. Measurement of spray deposition and efficiency of pesticide application in citrus orchards. J Agr Eng Res 46(3): 187-196. http://dx.doi.org/10.1016/S0021-8634(05)80125-8

Maski D, Durairaj D, 2010. Effects of charging voltage, application speed, target height, and orientation upon charged spray deposition on leaf abaxial and adaxial surfaces. Crop Prot 29: 134-141. http://dx.doi.org/10.1016/j.cropro.2009.10.006

Nuyttens D, De Schampheleire M, Baetens K, Brusselman E, Dekeyser D, Verboven P, 2011. Drift from field crop sprayers using an integrated approach: results of a five-year study. T ASABE 54: 403-408. http://dx.doi.org/10.13031/2013.36442

Panneton B, Lacasse B, Thériault R, 2005. Penetration of spray in apple trees as a function of airspeed, airflow, and power for tower sprayers. Can Biosyst Eng 47(2): 13-20.

Pascuzzi S, Guarella A, 2008. Kinematic study of the air flow produced by some sprayers used in "tendome" sprayers. J Agr Eng 3: 1-6.

Pergher G, Petris R, 2007. Canopy structure and deposition efficiency of vineyard sprayers. J Agr Eng 38(2): 31-38. http://dx.doi.org/10.4081/jae.2007.2.31

Praat JP, Maber JF, Manktelow DWL, 2000. The effect of canopy development and sprayer position on spray drift from a pipfruit orchard. NZ Plant Protect 53: 241-247.

Ramos C, Carbonell G, Garcia Baudín JM, Tarazona JV, 2000. Ecological risk assessment of pesticides in the Mediterranean region. The need for crop-specific scenarios. Sci Total Environ 247: 269-278. http://dx.doi.org/10.1016/S0048-9697(99)00496-9

Raupach MR, Leys FL, 1999. The efficacy of vegetation in limiting spray drift and dust movement. Report prepared for the Department of Land and Water Conservation, Gunnedah, Australia by CSIRO, Canberra, Australia. Available at http://www.clw.csiro.au/publications/technical99/tr47-99.pdf [accessed 20/06/2014].

Reichard DL, Fox RD, Brazee RD, Hall FR, 1979. Air velocities delivered by orchard air sprayers. T ASAE 22(1): 69-74. http://dx.doi.org/10.13031/2013.34968

Salyani M, Farooq M, 2004. Drift potential of citrus air-carrier sprayers. FSHS Proceedings 117: 130-135.

Stover E, Scotto D, Wilson C, Salyani M, 2002. Spray applications to citrus: overview of factors influencing spraying efficacy and off-target deposition. EDIS HS-128. Available at http://ufdc.ufl.edu/IR00002698/00001 [accessed 01/12/2014].

Su HB, Schmid HP, Vogel CS, Curtis PS, 2008. Effects of canopy morphology and thermal stability on mean flow and turbulence statistics observed inside a mixed hardwood forest. Agr Forest Meteor 148: 862-882. http://dx.doi.org/10.1016/j.agrformet.2007.12.002

Svensson SA, Brazee RD, Fox RD, Williams KA, 2003. Air jet velocities in and beyond apple trees from a two-fan cross-flow sprayer. T ASAE 46(3): 611-621. http://dx.doi.org/10.13031/2013.13587

Van de Zande JC, Stallinga H, Michielsen JMG, Van Velde P, 2004. Effects of sprayer speed on spray drift. Int Conf on Pesticide Application for Drift Management, Waikoloa (USA), Oct 27-29. pp: 339a-339j.

Vercruysse F, Steurbaut W, 2002. POCER, the pesticide occupational and environmental risk indicator. Crop Prot 21: 301-315. http://dx.doi.org/10.1016/S0261-2194(01)00102-8

Versteeg HK, Malalasekera W, 1995. An introduction to computational fluid dynamics. The finite volume method. Prentice Hall, Upper Saddle River (NJ, USA).

Walklate PJ, Weiner KL, 1994. Engineering models of air assistance orchard sprayers. Acta Hort 372: 75-82.

Walklate PJ, Weiner KL, Parkin CS, 1996. Analysis of experimental measurements made on a moving air-assisted sprayer with two-dimensional air-jets penetrating a uniform crop canopy. J Agr Eng Res 63: 365-378. http://dx.doi.org/10.1006/jaer.1996.0039

Weiner KL, Parkin CS, 1993. The use of computational fluid dynamic code for modelling spray from a mistblower. J Agr Eng Res 55: 313-324. http://dx.doi.org/10.1006/jaer.1993.1052

Yi C, 2008. Momentum transfer within canopies. J Appl Meteor Clim 47: 262-275. http://dx.doi.org/10.1175/2007JAMC1667.1

Yue W, Meneveau C, Parlange MB, Zhu W, Kang HS, Katz J, 2008. Turbulent kinetic energy budgets in a model canopy: comparisons between LES and wind-tunnel experiments. Environ Fluid Mech 8(1): 73-95. http://dx.doi.org/10.1007/s10652-007-9049-0

Zhu H, Zondag RH, Derksen RC, Reding ME, Krause CR, 2008. Influence of spray volume on spray deposition and coverage within nursery trees. J Environ Hort 26(1): 51-57.

Published
2015-05-29
How to Cite
Salcedo, R., Garcera, C., Granell, R., Molto, E., & Chueca, P. (2015). Description of the airflow produced by an air-assisted sprayer during pesticide applications to citrus. Spanish Journal of Agricultural Research, 13(2), e0208. https://doi.org/10.5424/sjar/2015132-6567
Section
Agricultural engineering