Short communication: Prediction of apparent metabolisable energy content of cereal grains and by-products for poultry from its chemical composition

  • Beatriz Losada COREN, Sociedad Cooperativa Galega, 32003 Ourense
  • Carlos de Blas Universidad Politécnica de Madrid, Dept. Producción Animal, 28040 Madrid
  • Paloma García-Rebollar Universidad Politécnica de Madrid, Dept. Producción Animal, 28040 Madrid
  • Pilar Cachaldora COREN, Sociedad Cooperativa Galega, 32003 Ourense
  • Jesús Méndez COREN, Sociedad Cooperativa Galega, 32003 Ourense
  • Miguel Ibañez Universidad Politécnica de Madrid, Dept. Estadística y Métodos de Gestión en Agricultura, 28040 Madrid
Keywords: energy evaluation, raw materials, error of prediction

Abstract

 

In order to predict the metabolisable energy content of ninety batches of cereal grains and cereal by-products for poultry, regression models derived from different sample aggregations and using chemical components as independent variables were compared. Several statistics have been calculated to estimate the error of prediction. The results indicate that the highest levels of significance and coefficients of determination were obtained for equations derived from the larger data sets. However, the lowest prediction errors were associated to equations calculated for data or groups of data closer to the ingredient studied.


Downloads

Download data is not yet available.

References

References

BOE, 2005. Real Decreto 1201/2005, de 10 de octubre, sobre protección de los animales utilizados para experimentación y otros fines científicos. Boletín Oficial del Estado 252: 34637-34391.

Bourdillon A, Carré B, Conan L, Duperray J, Huyghebaert G, Leclercq B, Lessire M, McNab J, Wiseman J, 1990. European reference method for the in vivo determination of metabolisable energy with adult cockerels: reproducibility, effect of food intake and comparison with individual laboratory methods. Br Poult Sci 31: 557-565. http://dx.doi.org/10.1080/00071669008417287

Canty A, Ripley B, 2013. Boot: Bootstrap R (S-Plus) Functions. R package version 1.3-9.

Carpenter KJ, Clegg KM, 1956. The metabolisable energy of poultry feeding-stuffs in relation to their chemical composition. J Sci Food Agric 7: 45-51. http://dx.doi.org/10.1002/jsfa.2740070109

Carré B, Prevotel B, Leclercq B, 1984. Cell wall content as a predictor of metabolisable energy value of poultry feedingstuffs. Br Poult Sci 25: 561-572. http://dx.doi.org/10.1080/00071668408454898

Dolz S, De Blas C, 1992. Metabolisable energy of meat and bone meal from Spanish rendering plants as influenced by level of substitution and method of determination. Poult Sci 71: 316-322. http://dx.doi.org/10.3382/ps.0710316

EEC, 1986. Directive de la Commission du 9 avril 1986 fixant la méthode de calcul de la valeur énergétique des aliments composés destinés à la volaille. Journal Officiel des Communautés Européennes 130: 53-54.

Efron B, Tibshirani RJ, 1993. An introduction to the bootstrap. Ed. Chapman & Hall, New York, 436 p.

Fisher C, 1982. Energy values of compound poultry feeds. Occasional Publication No. 2. Institute for Grassland & Animal Production, Poultry Division, Roslin, Midlothian, UK.

Garnsworthy PC, Wiseman J, Fegeros K, 2000. Prediction of chemical, nutritive and agronomic characteristics of wheat by near infrared spectroscopy. J Agric Sci 135: 409-417. http://dx.doi.org/10.1017/S0021859699008382

Losada B, Garcia-Rebollar P, Cachaldora P, Álvarez C, Mendez J, De Blas C, 2009. A comparison of the prediction of apparent metabolisable energy content of starchy grains and cereal by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Span J Agric Res 7: 813-823. http://dx.doi.org/10.5424/sjar/2009074-1096

Losada B, Garcia-Rebollar P, Álvarez C, Cachaldora P, Ibáñez MA, Mendez J, De Blas C, 2010. The prediction of apparent metabolisable energy content of oil seeds and oil seed by-products for poultry from its chemical components, in vitro analysis or near-infrared reflectance spectroscopy. Anim Feed Sci Technol 160: 62-72. http://dx.doi.org/10.1016/j.anifeedsci.2010.06.012

R Development Core Team, 2013. R: A language and environment for statistical computing. Ed. R Foundation for Statistical Computing, Vienna, Austria. Available at http://www.R-project.org.

SAS, 2008. SAS/STAT user's guide, version 9.3. SAS Institute Inc., Cary, NC, USA.

Sibbald IR, Price K, Barrete JP, 1980. True metabolisable energy values for poultry of commercial diets measured by bioassay and predicted from chemical data. Poult Sci 59: 808-811. http://dx.doi.org/10.3382/ps.0590808

Valdes EV, Leeson S, 1992. Near infrared reflectance analysis as a method to measure metabolisable energy in complete poultry feeds. Poult Sci 71: 1179-1187. http://dx.doi.org/10.3382/ps.0711179

Valdes EV, Leeson S, 1994. Measurement of metabolisable energy, gross energy, and moisture in feed grade fats by near infrared reflectance spectroscopy. Poult Sci 73: 163-171. http://dx.doi.org/10.3382/ps.0730163

Published
2015-05-29
How to Cite
Losada, B., de Blas, C., García-Rebollar, P., Cachaldora, P., Méndez, J., & Ibañez, M. (2015). Short communication: Prediction of apparent metabolisable energy content of cereal grains and by-products for poultry from its chemical composition. Spanish Journal of Agricultural Research, 13(2), e06SC02. https://doi.org/10.5424/sjar/2015132-6573
Section
Animal production