Short communication. Employment of molecular markers to develop tetraploid “supermale” asparagus from andromonoecious plants of the landrace ‘Morado de Huétor’

  • Jose J. Regalado Instituto de Horticultura Subtropical y Mediterránea La Mayora, CSIC-UMA. 29750 Algarrobo-Costa, Málaga
  • Juan Gil Universidad de Córdoba, ETSIAM, Dpto. Genética. Campus de Rabanales, Edif. C-5, 14071 Córdoba
  • Patricia Castro Universidad de Córdoba, ETSIAM, Dpto. Genética. Campus de Rabanales, Edif. C-5, 14071 Córdoba
  • Roberto Moreno Universidad de Córdoba, ETSIAM, Dpto. Genética. Campus de Rabanales, Edif. C-5, 14071 Córdoba
  • Carlos Lopez-Encina Instituto de Horticultura Subtropical y Mediterránea La Mayora, CSIC-UMA. 29750 Algarrobo-Costa, Málaga
Keywords: all-male cultivars, Asparagus landrace, EST-SSRs, hybrids, S-males, sex-linked marker

Abstract

The aim of this work was the development of new “supermale” genotypes retaining the highest genetic diversity possible of the tetraploid asparagus landrace ‘Morado de Huétor’. The elite andromonoecious male HT664 of the ‘Morado de Huétor’ asparagus landrace and the andromonoecious hybrid male HC027, obtained by crossing between this landrace and a commercial cultivar of Asparagus officinalis, were selected for self-pollination to produce possible “supermales” with genes of ‘Morado de Huétor’ (SMHT). To confirm the hybrid nature of HC027, we characterized this genotype with EST-SSR (Expressed Sequence Tag-derived Simple Sequence Repeats) markers. We also adopted the sex-linked marker Asp1-T7 for sex determination in ‘Morado de Huétor’ and the resulting hybrids between this landrace and other commercial cultivars. Asp1-T7 marker was used for the selection and genotyping of SMHT. “All-male” cultivars with a different genetic background can be generated by crossing females with these new “supermale” genotypes, and the agronomical traits of these new cultivars would be very different from the “all-male” cultivars currently available in the market, making them extremely interesting for asparagus breeding programs.

Downloads

Download data is not yet available.

References

Brettin TS, Sink C, 1992. Allozyme variation and genetics in asparagus. J Hered 83: 383-386.

Camadro EL, 1992. Cytological mechanism of 2n microspore formation in garden asparagus. HortScience 27(7): 831-832.

Camadro EL, 1994. Second meiotic restitution (SDR) 2n pollen formation in diploid and hexaploid species of Asparagus. Genet Resour Crop Evol 41: 1-7. http://dx.doi.org/10.1007/BF00051417

Caruso M, Federici CT, Roose ML, 2008. EST-SSR markers for asparagus genetic diversity evaluation and cultivar identification. Mol Breed 21: 195-204. http://dx.doi.org/10.1007/s11032-007-9120-z

Castro P, Rubio J, Gil J, Moreno R, 2014. Introgression of new germplasm in current diploid cultivars of garden asparagus from a tetraploid Spanish lancrace "Morado de Huétor". Sci Hortic 168: 157-160. http://dx.doi.org/10.1016/j.scienta.2014.01.007

Doré C, 1974. Production de plantes homozygotes mâles et femalles à partir d'anthères d'asperge cultivées in vitro. C R Acad Sci 278: 2135-2138.

Doré C, 1990. Asparagus anther culture and field trials of dihaploids and F1 hybrids. In: Bajaj YPS (Ed) haploids in crop improvement. I. Biotechnology in agriculture and forestry, vol. 12. Springer-Verlag, Berlin (Germany), pp: 322-345. http://dx.doi.org/10.1007/978-3-642-61499-6_16

Ellison JH, 1986. Asparagus breeding. In: Breeding vegetable crops (Bassett MJ, ed). AVI Publishing Co., Westport (Ireland), pp: 521-569.

Ellison JH, Kinelski JJ, 1985. Jersey Giant, an all-male asparagus hybrid. HortScience 20: 1141.

Ellison JH, Garrison SA, Kinelski JJ, 1990. Male asparagus hybrids—Jersey Gem, Jersey General, Jersey King, Jersey Knight, and Jersey Titan. HortScience 25: 816-817.

Flory WS, 1932. Genetic and cytological investigations on Asparagus officinalis L. Genet 17: 432-467.

Geoffriau E, Denoue D, Rameau C, 1992. Assessment of genetic variation among asparagus (Asparagus officinalis L.) population and cultivars: agromorphological and isozymatic data. Euphytica 61: 169-179. http://dx.doi.org/10.1007/BF00039655

Hasegawa S, Taniguchi Y, Okimori A, Kakehi M, 1987. Studies on polyploidy breeding in asparagus (Asparagus officinalis L.) 2. On the characteristics of triploid. Bull Hiroshima Prefect Agric Exp Stn 50: 75-80.

Horiuchi K, Adachi Y, Kasai N, Yamagishi M, Masuda K, 2011. Identification of homozygous male plants by quantitative analysis of a nucleotide sequence linked to the sex-determination locus in Asparagus officinalis L. J Japan Soc Hort Sci 80 (3): 308-313. http://dx.doi.org/10.2503/jjshs1.80.308

Jamsari A, Nitz I, Reamon-Büttner SM, Jung C, 2004. BAC-derived diagnostic markers for sez determination in asparagus. Theor Appl Genet 108: 1140-1146. http://dx.doi.org/10.1007/s00122-003-1529-0

Khandka DK, Nejidat A, Golan-Goldhirsh A, 1996. Polymorphism and DNA markers for asparagus cultivars identified by random amplified polymorphic DNA. Euphytica 87: 39-44. http://dx.doi.org/10.1007/BF00022962

Kubota S, Konno I, Kanno A, 2012. Molecular phylogeny of the genus Asparagus (Asparagacea) explains interspecific crossability between the garden asparagus (A. officinalis) and other Asparagus species. Theor Appl Genet 124: 345-354. http://dx.doi.org/10.1007/s00122-011-1709-2

Lallemand J, Briand F, Breuils F, Denoue D, Rameau C, 1994. Identification of asparagus varieties by isozyme patterns. Euphytica 79: 1-4. http://dx.doi.org/10.1007/BF00023569

López-Anido F, Cointry E, 2008. Asparagus. In: Vegetables II: Fabaceae, Liliaceae, Umbelliferae, and Solanaceae (Prohens J, Nuez F, eds). Series: Handbook of plant breeding. Springer, NY, (USA), pp: 87-119.

Löptien H, 1979. Identification of the sex chroomosome pair in asparagus (Asparagus officinalis L.). Z Pflanzenzücht 82: 162-173.

Moreno R, Espejo JA, Cabrera A, Millan T, Gil J, 2006. Ploidic and molecular analysis of 'Morado de Huetor' asparagus (Asparagus officinalis L.) population; a Spanish tetraploid landrace. Genet Resour Crop Evol 53: 729-736. http://dx.doi.org/10.1007/s10722-004-4717-0

Moreno R, Espejo JA, Cabrera A, Gil J, 2008a. Origin of tetraploid cultivated asparagus landraces inferred from nrDNA ITS polymorphisms. Ann Appl Biol 153: 233-241. http://dx.doi.org/10.1111/j.1744-7348.2008.00254.x

Moreno R, Espejo JA, Moreno MT, Gil J, 2008b. Collection and conservation of "Morado de Huetor" Spanish tetraploid asparagus landrace. Genet Resour Crop Evol 55: 773-777. http://dx.doi.org/10.1007/s10722-008-9358-2

Moreno R, Espejo JA, Gil J, 2010. Development of triploid hybrids in asparagus breeding employing a tetraploid landrace. Euphytica 173: 369-375. http://dx.doi.org/10.1007/s10681-009-0103-5

Nakayama H, Ito T, Hayashi Y, Sonoda T, Fukuda T, Ochiai T, Kameya T, Kanno A, 2006. Development of sex-linked primers in garden asparagus (Asparagus officinalis L.). Breed Sci 56: 327-330. http://dx.doi.org/10.1270/jsbbs.56.327

Ozaki Y, Narikiyo K, Fujita C, Okubo H, 2004. Ploidy variation of progenies from intra- and inter-ploidy crosses with regard to trisomic production in asparagus (Asparagus officinalis L.). Sex Plant Reprod 17: 157-164. http://dx.doi.org/10.1007/s00497-004-0229-5

Park JH, Ishikawa Y, Yoshida R, Kanno A, Kameya T, 2003. Expression of AODEF, a B-functional MADS-box gene, in stamens and inner tepals of the dioecious species Asparagus officinalis L. Plan Mol Biol 51: 867-875. http://dx.doi.org/10.1023/A:1023097202885

Qiao Y, Falavigna A, 1990. An improved in vitro anther culture method for obtaining doubled-haploid clones of Asparagus. Acta Hort 271: 145-150.

Riccardi P, Casali PE, Mercati F, Falavigna A, Sunseri F, 2011. Genetic characterization of asparagus doubled haploids collection and wild relatives. Sci Hort 130: 691-700. http://dx.doi.org/10.1016/j.scienta.2011.08.028

Skiebe K, Stein M, Gottwald J, Wolterstorff B, 1991. Breeding of polyploid asparagus (Asparagus officinalis L.). Plant Breed 106: 99-106. http://dx.doi.org/10.1111/j.1439-0523.1991.tb00487.x

Sneep J, 1953. The significance of andromonoecy for the breeding of Asparagus officinalis L. Euphytica 2: 89-95. http://dx.doi.org/10.1007/BF00053730

Torres AM, Weeden NF, Martín A, 1993. Linkage among isozyme, RFLP and RAPD markers in Vicia faba. Theor Appl Genet 85: 937-945. http://dx.doi.org/10.1007/BF00215032

Published
2014-10-22
How to Cite
Regalado, J. J., Gil, J., Castro, P., Moreno, R., & Lopez-Encina, C. (2014). Short communication. Employment of molecular markers to develop tetraploid “supermale” asparagus from andromonoecious plants of the landrace ‘Morado de Huétor’. Spanish Journal of Agricultural Research, 12(4), 1131-1136. https://doi.org/10.5424/sjar/2014124-6577
Section
Plant breeding, genetics and genetic resources