Ensiled citrus pulp as a by-product feedstuff for finishing pigs: nutritional value and effects on intestinal microflora and carcass quality

  • Verónica Moset Instituto Valenciano de Investigaciones Agrarias, Centro de Investigación y Tecnología Animal (CITA-IVIA). Pol. Ind. La Esperanza, 100. 12400 Segorbe, Castellón Universitat Politècnica de València, Instituto de Ciencia y Tecnología Animal. 46022 Valencia
  • Olga Piquer Universidad CEU-Cardenal-Herrera, Departamento de Producción Animal, Sanidad Animal y Ciencia y Tecnología de los Alimentos. 46113 Moncada, Valencia
  • Concepción Cervera Universitat Politècnica de València, Instituto de Ciencia y Tecnología Animal. 46022 Valencia
  • Carlos J. Fernández Universitat Politècnica de València, Instituto de Ciencia y Tecnología Animal. 46022 Valencia
  • Pilar Hernández Universitat Politècnica de València, Instituto de Ciencia y Tecnología Animal. 46022 Valencia
  • Alba Cerisuelo Instituto Valenciano de Investigaciones Agrarias, Centro de Investigación y Tecnología Animal (CITA-IVIA). Pol. Ind. La Esperanza, 100. 12400 Segorbe, Castellón
Keywords: agroindustrial by-products, digestibility, gut microbiology, carcass performance

Abstract

Forty pigs of 76.8 ± 4.2 kg body weight were fed four different diets varying in ensiled citrus pulp (ECP) inclusion level (0, 50, 100, and 150 g of ECP/kg of diet on dry matter base). The trial lasted 5 weeks. During the last week, faecal samples were obtained to calculate apparent nutrient digestibility; also volatile fatty acids (VFA) content in faeces was determined. The digestible energy and protein of ECP was estimated by regression analysis. During the trial faecal samples were collected to determine enterobacteria and lactobacilli counts. At slaughter, carcass characteristics were registered. The inclusion of ECP in the diets decreased energy digestibility but increased neutral and acid detergent fibre digestibility linearly (p<0.05). The estimated digestible energy and protein of ECP were lower than expected (7.0 MJ/kg dry matter (DM) and 33.8 g/kg DM, respectively). Total VFA production in faeces was not affected by the diet. Both enterobacteria and lactobacilli counts were lower (p<0.01) with than without ECP inclusion at the end of the study. Carcass yield decreased linearly (p<0.05) and backfat at gluteus medius increased quadratically (p<0.05) with the inclusion of ECP in the diet. The polyunsaturated fatty acid content of the internal subcutaneous fat layer decreased quadratically (p<0.05) with the inclusion of ECP. Thus, the nutritive value of ECP for finishing pigs is low and levels of 150g/kg can negatively affect carcass yield. However, including up to 100 g of ECP/kg in finishing pig diets did not affect nutrient digestibility, carcass yield and subcutaneous fat FA profile. Additionally, increasing ECP levels in diets decreases faecal enterobacteria and lactobacilli counts in faeces.

Downloads

Download data is not yet available.

References

Amorim AB, Thomaz MC, Ruiz US, Martinez JF, Pascoal LAF, Daniel E, Watanabe PH, Rosalen DL, 2014. Citrus pulp and enzyme complex for growing and finishing pigs. Rev Bras Saúde Prod Anim 15(2): 369-380. http://dx.doi.org/10.1590/S1519-99402014000200009

Anguita M, Canibe N, Pérez JF, Jensen BB, 2006. Influence of the amount of dietary fiber on the available energy from hindgut fermentation in growing pigs: Use of cannulated pigs and in vitro fermentation. J Anim Sci 84: 2766-2778. http://dx.doi.org/10.2527/jas.2005-212

AOAC, 2000. Official methods of analysis. Association of Official Analytical Chemists, Gaithersburg (MD), USA.

Baird DM, Allison JR, Heaton EK, 1974. The energy value for and influence of citrus pulp in finishing diets for swine. J Anim Sci 38: 545-553.

Bampidis VA, Robinson PH, 2006. Citrus by-products as ruminant feeds: a review. Anim Feed Sci Technol 128: 175-217. http://dx.doi.org/10.1016/j.anifeedsci.2005.12.002

Bindelle J, Leterme P, Buldgen A, 2008. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnol Agron Soc Environ 12: 69-80.

Canibe N, Jensen BB, 2003. Fermented and nonfermented liquid feed to growing pigs: Effect on aspects of gastrointestinal ecology and growth performance. J Anim Sci 81: 2019-2031.

Cerisuelo A, Castelló L, Moset V, Martínez M, Hernández P, Piquer O, Gómez E, Gasa J, Lainez M, 2010. The inclusion of ensiled citrus pulp in diets for growing pigs: Effects on voluntary intake, growth performance, gut microbiology and meat quality. Livest Sci 134: 180-182. http://dx.doi.org/10.1016/j.livsci.2010.06.135

Cerisuelo A, Moset V, Bonet J, Coma J, Lainez M, 2012. Effects of inclusion of sorghum distillers dried grains with solubles (DDGS) in diets for growing and finishing pigs. Span J Agric Res 10: 1016-1024. http://dx.doi.org/10.5424/sjar/2012104-520-11

Cervera C, Fernandez-Carmona J, Marti J, 1985. Effect of urea on the ensiling process of orange pulp. Anim Feed Sci Technol 12: 233-238. http://dx.doi.org/10.1016/0377-8401(85)90017-3

Crosswhite JD, Myers NB, Adesogan AT, Brendemuhl JH, Johnson DD, Carr CC, 2013. The effect of dietary citrus pulp on the growth, feed efficiency, carcass merit, and lean quality of finishing pigs. The Professional Animal Scientist 29: 345-358.

De Mol J, 1992. Raw material compendium: a compilation of world-wide data sources. Novus Europe SA/NV, Brussels.

Ewing, WN, 2008. The living gut. Nottingham Univ. Press, UK.

FEDNA, 2010. Tablas FEDNA de composición y valor nutritivo de alimentos para la fabricación de piensos compuestos; De Blas C, Mateos GG, Rebollar PG, eds. Fundación Española para el Desarrollo de la Nutrición Animal, Madrid.

Fung YTE, Sparkes J, Van Ekris I, Chaves AV, Bush RD, 2010. Effects of feeding fresh citrus pulp to Merino wethers on wool growth and animal performance. Anim Prod Sci 50: 52–58. http://dx.doi.org/10.1071/EA08304

Galassi G, Crovetto GM, Rapetti L, Tamburinï A, 2004. Energy and nitrogen balance in heavy pigs fed different fibre sources. Livest Prod Sci 85: 253-262. http://dx.doi.org/10.1016/S0301-6226(03)00124-6

Gasa J, Castrillo C, Guada JA, Balcells J. 1992. Rumen digestion of ensiled apple pomace in sheep: effect of proportion in diet and source of nitrogen supplementation. Anim Feed Sci Technol 39: 193-207. http://dx.doi.org/10.1016/0377-8401(92)90041-4

Hall MB, Lewis BA, Van Soest PJ, Chase LE, 1997. A simple method for estimation of neutral detergent-soluble fibre. J Sci Food Agr 74: 441-449. 3.0.CO;2-C" target="_blank">http://dx.doi.org/10.1002/(SICI)1097-0010(199708)74:4<441::AID-JSFA813>3.0.CO;2-C

Ivarsson E, Liu HY, Dicksved J, Roos S, Lindberg JE, 2012. Impact of chicory inclusion in a cereal-based diet on digestibility, organ size and faecal microbiota in growing pigs. Animal 6: 1077-1085. http://dx.doi.org/10.1017/S1751731111002709

Jensen BB, Jørgensen H, 1994. Effect of dietary fiber on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs. Appl Environ Microbiol 60: 1897–1904.

Jørgensen H, Zhao XQ, Eggum BO, 1996. The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract, digestibility, degree of fermentation in the hind-gut and energy metabolism in pigs. Br J Nutr 75: 365-378. http://dx.doi.org/10.1079/BJN19960140

Jouany JP, 1982. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Sci Aliment 2: 131-144.

Kayouli C, Lee S, 1998. Supplementary feeding for dairy smallholders in Pacific Island Countries: Fiji, Samoa, Vanuatu, Cook Islands, Solomon Islands and Tonga. In: Manual of smallholder milk production in the South Pacific; Lee S, Kennard R, Kayouli C, eds. FAO Sub-Regional Office for the Pacific, Apia (Samoa). pp: 67-101.

Kyriazakis I, Emmans GC, 1995. The voluntary feed intake of pigs given feeds based on wheat bran, dried citrus pulp and grass meal, in relation to measurements of feed bulk. Br J Nutr 73: 191-207. http://dx.doi.org/10.1079/BJN19950023

Leterme P, Londoño AM, Estrada F, Wolfgang BS, Buldgen A, 2005. Chemical composition, nutritive value and voluntary intake of tropical tree foliage and cocoyam in pigs. J Sci Food Agr 85: 1725-1732. http://dx.doi.org/10.1002/jsfa.2177

Macfarlane GT, Gibson GR, Beatty E, Cummings JH, 1992. Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiol Lett 101: 81-88. http://dx.doi.org/10.1111/j.1574-6968.1992.tb05764.x

Márquez MC, Ramos P, 2007. Effect of the inclusion of food waste in pig diets on growth performance, carcass and meat quality. Animal 1: 595-599. http://dx.doi.org/10.1017/S1751731107685000

Martínez-Pascual J, Fernández-Carmona J, 1980. Composition of citrus pulp. Anim Feed Sci Technol 5: 1-10. http://dx.doi.org/10.1016/0377-8401(80)90005-X

Martínez-Vallespín B, Navarrete C, Martínez-Paredes E, Ródenas L, Cervera C, Blas E, 2011. Determinación de la fibra soluble en detergente neutro: modificaciones del método original. Proc XIV Jornadas sobre Producción Animal; Sanz A et al., eds. May, Montañana, Zaragoza. pp: 17-18.

Montagne L, Pluske JR, Hampson DJ, 2003. A review of interactions between dietary fibre and the intestinal mucosa, and their consequences on digestive health in young non-ruminant animals. Anim Feed Sci Technol 108: 95-117. http://dx.doi.org/10.1016/S0377-8401(03)00163-9

NRC, 2012. Nutrient requirements of swine. National Research Council, Nat Acad Press, Washington DC, USA.

Noblet J, Le Goff G, 2001. Effect of dietary fibre on the energy value of feeds for pigs. Anim Feed Sci Technol 90: 35-52. http://dx.doi.org/10.1016/S0377-8401(01)00195-X

O'Fallon JV, Busboom JR, Nelson ML, Gaskins CT, 2007. A direct method for fatty acid methyl ester synthesis: Application to wet meat tissues, oils, and feedstuffs. J Anim Sci 85: 1511-1521. http://dx.doi.org/10.2527/jas.2006-491

Oluremi OIA, Okafor FN, Adenkola AY, Orayaga KT, 2010. Effect of fermentation of sweet orange (Citrus sinensis) fruit peel on its phytonutrients and the performance of broiler starter. Int J Poultry Sci 9: 546-549. http://dx.doi.org/10.3923/ijps.2010.546.549

O'Sullivan TC, Lynch PB, Morrisey PA, O'Grady JF, 2003. Evaluation of citrus pulp in diets for sows and growing pigs. Ir J Agr Food Res 42: 243-253.

Piquer O, 2006. Whole citrus fruits in sheep nutrition. Doctoral thesis. Univ. Politécnica, Valencia, Spain.

Rijnen MMJA, Verstegen MWA, Heetkamp MJW, Haaksma J, Schrama JW, 2001. Effect of dietary fermentable carbohydrates on energy metabolism in group-housed sows. J Anim Sci 79: 148-154.

Ruiz US, Tomaz MC, Pascoal LAF, Watanabe PH, Amorim AB, Melo G M P, Daniel E, 2012. Nutrient digestibility of degermed, dehulled corn, citrus pulp, and soy protein concentrate by barrows. J Anim Sci 90:170–172. http://dx.doi.org/10.2527/jas.53863

Stein HH, Shurson GC, 2009. Board-Invited Review: The use and application of distillers dried grains with solubles in swine diets. J Anim Sci 87: 1292-1303. http://dx.doi.org/10.2527/jas.2008-1290

Van Kleef KJ, Deuring K, Van Leeuwen P, 1994. A new method of feces collection in the pig. Lab Anim 28: 78-79. http://dx.doi.org/10.1258/002367794781065942

Van Soest PJ, Robertson JB, Lewis BA, 1991. Methods for dietary fiber, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci 74: 3583-3597. http://dx.doi.org/10.3168/jds.S0022-0302(91)78551-2

Van Winsen RL, Urlings BAP, Lipman LJA, Snijders JMA, Keuzenkamp D, Verheijden JHM, Van Knapen F, 2001. Effect of fermented feed on the microbial population of the gastrointestinal tracts of pigs. Appl Environ Microbiol 67: 3071-3076. http://dx.doi.org/10.1128/AEM.67.7.3071-3076.2001

Villamide MJ, García J, Cervera C, Blas E, Maertens L, Perez JM, 2003. Comparison among methods of nutritional evaluation of dietary ingredients for rabbits. Anim Feed Sci Technol 109: 195-207. http://dx.doi.org/10.1016/S0377-8401(03)00177-9

Watanabe PH, Thomaz MC, Ruiz US, Santos VM, Fraga AL, Fonseca Pascoal LA, Silva SZ, Gonzáles de Faria H, 2010a. Effect of inclusion of citrus pulp in the diet of finishing swines. Braz Arch Biol Technol 53 (3): 709-718. http://dx.doi.org/10.1590/S1516-89132010000300028

Watanabe PH, Thomaz MC, Ruiz US, Santos VM, Masson GCI, Fraga AL, Pascoal LAF, Robles-Huaynate RA, Silva SZ, 2010b. Carcass characteristics and meat quality of heavy swine fed different citrus pulp levels. Arq Bras Med Vet Zootec 62 (4): 921-929. http://dx.doi.org/10.1590/S0102-09352010000400023

Williams B, Verstegen MWA, Tamminga S, 2001. Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr Res Rev 14: 207-227. http://dx.doi.org/10.1079/NRR200127

Wood JD, Enser M, 1997. Factors influencing fatty acids in meat and the role of antioxidants in improving meat quality. Br J Nutr 78: 49-60. http://dx.doi.org/10.1079/BJN19970134

Xandé X, Régnier C, Archimède H, Bocage B, Noblet J, Renaudeau D, 2010. Nutritional values of sugarcane products in local Caribbean growing pigs. Animal 4: 745-754. http://dx.doi.org/10.1017/S175173110999173X

Zacharias B, Kerler A, Drochner W, 2004. The influence of 5% and 10% dietary apple pectin on parameters of fermentation in faeces and caecal digesta of weaning pigs. Arch Anim Nutr 58: 149-156. http://dx.doi.org/10.1080/00039420410001667502

Published
2015-08-28
How to Cite
Moset, V., Piquer, O., Cervera, C., Fernández, C. J., Hernández, P., & Cerisuelo, A. (2015). Ensiled citrus pulp as a by-product feedstuff for finishing pigs: nutritional value and effects on intestinal microflora and carcass quality. Spanish Journal of Agricultural Research, 13(3), e0607. https://doi.org/10.5424/sjar/2015133-6717
Section
Animal production