Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum

  • Xuping Feng Zhejiang University, College of Life Sciences, State Key Laboratory of Plant Physiology and Biochemistry. Hangzhou 310058
  • Yongqing He Zhejiang A & F University, School of Forestry & Biotechnology. Linan 311300
  • Jia Fang Zhejiang A & F University, School of Forestry & Biotechnology. Linan 311300
  • Zongxiang Fang Zhejiang A & F University, School of Forestry & Biotechnology. Linan 311300
  • Bo Jiang Zhejiang A & F University, School of Forestry & Biotechnology. Linan 311300
  • Maryse Brancourt-Hulmel INRA USTL UMR SADV 1281, Estrées-Mons BP 50135, 80203 Peronne Cedex
  • Bingsong Zheng Zhejiang A & F University, School of Forestry & Biotechnology. Linan 311300
  • Dean Jiang Zhejiang University, College of Life Sciences, State Key Laboratory of Plant Physiology and Biochemistry. Hangzhou 310058
Keywords: agronomic traits, perennial grasses, correlation analysis

Abstract

Miscanthus and Saccharum are considered excellent candidates for bioenergy feedstock production. A field experiment was conducted in Zhejiang province of China to characterize the phenotypic differences in three species, two of Miscanthus (M. sinensis and M. floridulus) and one of Saccharum (S. arundinaceum), each with two accessions collected from China. Agronomical traits, including plant height, culm number, tuft diameter and culm diameter, were monitored monthly for the first 3 years of growth. For each year of trail, flowering time was observed and biomass yield was harvested. M. floridulus produced a superior biomass yield with increasing plant age associated with higher yields (4.18, 24.16 and 29.01 t dry matter/hain November of years one to three, respectively). Higher culm diameter, plant height and tuft diameter values were observed for M. floridulus when compared to the other species. Biomass yield was positively correlated to tuft diameter, culm diameter, culm number and negatively to flowering time, but it showed no correlation with plant height. Tuft diameter and culm diameter could be suitable indicators in the selection of accessions for crop yield at the yield-building phase. Studies of the primary colonizers of Miscanthus and Saccharum in their original location may be of interest from the perspective of bioenergy germplasm resource collection.

Downloads

Download data is not yet available.

References

Anderson E, Arundale R, Maughan M, Oladeinde A, Wycislo A, Voigt T, 2011. Growth and agronomy of Miscanthus × giganteus for biomass production. Biofuels 2: 167-183. http://dx.doi.org/10.4155/bfs.10.80

Berding NB, Roach T, 1987. Germplasm conservation, collection, maintenance, and use. In: Sugarcane improvement through breeding; Heinz DJ (ed). pp: 143-210. Elsevier, Amsterdam. http://dx.doi.org/10.1016/B978-0-444-42769-4.50009-6

Chen SL, Renvoize SA, 2006. Miscanthus Andersson, Öfvers. Kongl. Vetensk.-Akad Förh 12: 165. 1855. Flora China 22: 581-583.

Chou CH, Lee YF, Chui CY, Wang YC, Hu FH, 1991. Population study of Miscanthus Iv. Growth performance of M. floridulus and M. transmorrisonensis and their acclimation to temperatures and water stresses. Bot Bull Academia Sinica 32: 87-96.

Clifton-Brown JC, Lewandowski I, 2002. Screening Miscanthus genotypes in field trials to optimism biomass yield and quality in Southern Germany. Eur J Agron 16: 97-110. http://dx.doi.org/10.1016/S1161-0301(01)00120-4

Clifton-Brown JC, Lewandowski I, Andersson B, Basch G, Christian DG, Kjeldsen JB, Jorgensen U, Mortensen JV, Riche AB, Schwarz KU, 2001. Performance of 15 Miscanthus genotypes at five sites in Europe. Agron J 93: 1013-1019. http://dx.doi.org/10.2134/agronj2001.9351013x

Clifton-Brown J, Robson P, Allison G, Lister S, Sanderson R, Hodgson E, Farrar K, Hawkins S, Jensen E, Jones S, et al., 2008. Miscanthus: breeding our way to a better future. Aspects of Applied Biology 90: 199–206.

Cosentino SL, Patane C, Sanzone E, Copani V, Foti S, 2007. Effects of soil water content and nitrogen supply on the productivity of Miscanthus × giganteus Greef et Deu. in a Mediterranean environment. Ind Crop Prod 25: 75-88. http://dx.doi.org/10.1016/j.indcrop.2006.07.006

Deren CW, Snyder GH, Tai PYP, Turick CE, Chynoweth DP, 1991. Biomass production and biochemical methane potential of seasonally flooded inter-generic and inter-specific Saccharum hybrids. Bioresour Technol 36: 179-184. http://dx.doi.org/10.1016/0960-8524(91)90177-L

Greef JM, Deuter M, 1993. Syntaxonomy of Miscanthus. × giganteus Greef et Deu. Angewandte Botanik 67: 87-90.

Heaton EA, Dohleman FG, Long SP, 2008. Meeting US biofuel goals with less land: the potential of Miscanthus. Global Change Biol 14: 2000-2014. http://dx.doi.org/10.1111/j.1365-2486.2008.01662.x

Heaton EA, Dohleman FG, Miguez AF, Juvik JA, Lozovaya V, Widholm J, Zabotina OA, McIsaac GF, David MB,Voigt TB, 2010. Miscanthus: a promising biomass crop. Adv Bot Res 56: 75-137. http://dx.doi.org/10.1016/B978-0-12-381518-7.00003-0

Hodkinson TR, Chase MW, Lledo MD, Salamin N, Renvoize SA, 2002a. Phylogenetics of Miscanthus, Saccharum and related genera (Saccharinae, Andropogoneae, Poaceae) based on DNA sequences from ITS nuclear ribosomal DNA and plastid trnL intron and trnL-F intergenic spacers. J Plant Res 115: 381-392. http://dx.doi.org/10.1007/s10265-002-0049-3

Hodkinson TR, Chase MW, Renvoize SA, 2002b. Characterization of a genetic resource collection for Miscanthus (Saccharinae, Andropogoneae, Poaceae) using AFLP and ISSR PCR. Ann Bot 89: 627-636. http://dx.doi.org/10.1093/aob/mcf091

Huang CL, Liao WC, Lai YC, 2011. Cultivation studies of Taiwanese native Miscanthus floridulus lines. Biomass Bioenergy 35: 1873-1877. http://dx.doi.org/10.1016/j.biombioe.2011.01.032

Ibeto CN, Ofoefule AU, Agbo KE, 2011. A global overview of biomass potentials for bioethanol production: a renewable alternative fuel. Trends Appl Sci Res 6: 410-425. http://dx.doi.org/10.3923/tasr.2011.410.425

Jezowski S, 2008. Yield traits of six clones of Miscanthus in the first 3 years following planting in Poland. Ind Crop Prod 27: 65-68. http://dx.doi.org/10.1016/j.indcrop.2007.07.013

Maughan M, Bollero G, Lee DK, Darmody R, Bons S, Cortese L, Murphy J, Gaussoin R, Sousek M, Williams D, 2012. Miscanthus × giganteus productivity: the effects of management in different environments. GCB Bioenergy 4: 253-265. http://dx.doi.org/10.1111/j.1757-1707.2011.01144.x

McKendry P, 2002. Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83: 37-46. http://dx.doi.org/10.1016/S0960-8524(01)00118-3

McMaster GS, Wilhelm WW, 1997. Growth degree-day: one equation, two interpretations. Agr Forest Meteorol 87: 291-300. http://dx.doi.org/10.1016/S0168-1923(97)00027-0

Mislevy P, Martin FG, Adjei MB, Miller JD, 1997. Harvest management effects on quantity and quality of Erianthus plant morphological components. Biomass Bioenergy 13: 51-58. http://dx.doi.org/10.1016/S0961-9534(97)00023-8

Mukherjee SK, 1957. Origin and distribution of Saccharum. Bot Gag 119: 55-61. http://dx.doi.org/10.1086/335962

Price L, Bullard M, Lyons H, Anthony S, Nixon P, 2004. Identifying the yield potential of Miscanthus × giganteus: an assessment of the spatial and temporal variability of M. × giganteus biomass productivity across England and Wales. Biomass Bioenergy 26: 3-13. http://dx.doi.org/10.1016/S0961-9534(03)00062-X

Roach BT, Daniels J, 1987. A review of the origin and improvement of sugarcane. Copestone Intl Sugarcane Breeding Workshop Vol 1, pp: 1-31.

Saballos A, 2008. Development and utilization of sorghum as a bioenergy crop. In: W. Vermerris (eds). Genetic improvement of bioenergy crops, Vermerris W (ed). pp: 211-248. Springer Science and Business Media, LLC, NY, http://dx.doi.org/10.1007/978-0-387-70805-8_8

Stewart JR,Toma Y, Fernandez FG,Nishiwaki A, Yamada T, Bollero G, 2009. The ecology and agronomy of Miscanthus sinensis, a species important to bioenergy crop development, in its native range in Japan: a review. GCB Bioenergy 1: 126-153. http://dx.doi.org/10.1111/j.1757-1707.2009.01010.x

Sun QA, Lin Q, Yi ZL, Yang ZR, Zhou FS, 2010. A taxonomic revision of Miscanthus s.l. (Poaceae) from China. Bot J Linn Soc 164: 178-220. http://dx.doi.org/10.1111/j.1095-8339.2010.01082.x

Yan J, Chen WL, Luo F, Ma HZ, Meng AP, Li XW, Zhu M, Li SS, Zhou HF, Zhu WX, 2012. Variability and adaptability of Miscanthus species evaluated for energy crop domestication. GCB Bioenergy 4: 49-60. http://dx.doi.org/10.1111/j.1757-1707.2011.01108.x

Zhang CB, Wang J, Wang ML, 2009. Effects of natural inhabitation of Miscanthus floridulus on soil microbial biomass, respiration rate and enzyme activity in a mine tailing dump. Plant Nutr Fer Sci 15 (2): 386-394.

Zub HW, Brancourt-Hulmel M, 2010. Agronomic and physiological performances of different species of Miscanthus, a major energy crop. A review. Agron Sustain Dev 30: 201-214. http://dx.doi.org/10.1051/agro/2009034

Zub HW, Arnoult S, Brancourt-Hulmel M, 2011. Key traits for biomass production identified in different Miscanthus species at two harvest dates. Biomass Bioenergy 35: 637-651. http://dx.doi.org/10.1016/j.biombioe.2010.10.020

Published
2015-08-28
How to Cite
Feng, X., He, Y., Fang, J., Fang, Z., Jiang, B., Brancourt-Hulmel, M., Zheng, B., & Jiang, D. (2015). Comparison of the growth and biomass production of Miscanthus sinensis, Miscanthus floridulus and Saccharum arundinaceum. Spanish Journal of Agricultural Research, 13(3), e0703. https://doi.org/10.5424/sjar/2015133-7262
Section
Plant breeding, genetics and genetic resources