Role of the arbuscular mycorrhizal symbiosis in tolerance response against Armillaria mellea in lavender

Cinta Calvet, Francesc Garcia-Figueres, Paulo Lovato, Amelia Camprubi


Lavender species form the arbuscular mycorrhizal symbiosis and are at the same time highly susceptible to white root rot. In an attempt to evaluate the response of mycorrhizal Lavandula angustifolia L. to Armillaria mellea (Vahl:Fr) P. Kumm in a greenhouse experiment, plants were previously inoculated with an isolate of the arbuscular mycorrhizal fungus Rhizophagus irregularis (former Glomus intraradices BEG 72) and the influence of the pH growing medium on the plant-symbiont-pathogen interaction was tested in gnotobiotic autotrophic growth systems in which mycorrhizal inoculum was obtained from root organ cultures. After ten months growth dual-inoculated lavender plants grown in containers with a pasteurized substrate mixture produced a similar number of spikes than healthy plants and achieved equivalent plant diameter coverage. When the growing medium in the autotrophic systems was supplemented with calcium carbonate, the inoculation of lavender plantlets with R. irregularis at higher pH (7.0 and 8.5) media caused a significant decrease of A. mellea presence in plant roots, as detected by qPCR. Moreover, the observation of internal root mycorrhizal infection showed that the extent of mycorrhizal colonization increasedin plant rootsgrown at higher pH, indicating that tolerance to white root rot in lavender plants inoculated with R. irregularis could be associated to mycorrhizal establishment.


white root rot; control strategies; Glomus intraradices; Lavandula angustifolia; pH; Rhizophagus irregularis

Full Text:



Arhens U, Seemüller E, 1992. Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain-reaction that amplifies a sequence of the 16S RNA gene. Phytopathology 82: 828-832.

Azcón R, Barea JM, 1997. Mycorrhizal dependency of a representative plant species in Mediterranean shrublands (Lavandula spica L.) as a key factor to its use for revegetation strategies in desertification-threatened areas. Appl Soil Ecol 7: 83-92.

Azcón-Aguilar C, Jaizme-Vega M, Calvet C, 2002. The contribution of arbuscular mycorrhizas to the control of soilborne plant pathogens. In: Mycorrhizal technology in agriculture: from genes to bioproducts; Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (eds). Birkhaüser, Basel, Switzerland.

Bakkali-Yakhlef S, Abbas Y, Prin Y, Abourouh M, Perrineau MM, Duponnois R, 2011. Effective arbuscular mycorrhizal fungi in the roots of Tetraclinis articulata and Lavandula multifida in moroccan Tetraclinis woodlands. Mycology 2: 79-86.

Bashan Y, Salazar BG, Moreno M, López BR, Linderman RG, 2012. Restoration of eroded soil in the Sonoran desert with native leguminous trees using plant growth promoting microorganisms and limited amounts of compost and water. J Environ Manage 102: 26-36.

Baumgartner K, Bhat R, Fujiyoshi P, 2010. A rapid infection assay for Armillaria and real-time PCR quantitation of the fungal biomass in planta. Fungal Biol 114: 107-119.

Calvet C, Pinochet J, Hernández-Dorrego A, Estaún V, Camprubi A, 2001. Field microplot performance of the peach-almond hybrid GF 677 after inoculation with arbuscular mycorrhizal fungi in a replant soil infested with root-knot nematodes. Mycorrhiza 10: 295-300.

Camprubi A, Calvet C, 1996. Isolation and screening of mycorrhizal fungi from citrus nurseries and orchards and inoculation studies. HortScience 31: 366-369.

Camprubi A, Estaún V, Nogales A, García-Figueres F, Pitet M, Calvet C, 2008. Response of the grapevine rootstock Richter 110 to inoculation with native and selected arbuscular mycorrhizal fungi and growth performance in a replant vineyard. Mycorrhiza 18: 211-216.

Declerck S, Strullu DG, Plenchette C, 1996. In vitro mass-production of the arbuscular mycorrhizal fungus, Glomus versiforme associated with Ri T-DNA transformed carrot roots. Mycol Res 100: 1237-1242.

Estaún V, Camprubi A, Calvet C, Pinochet J, 2003. Nursery and field response of olive trees inoculated with two arbuscular mycorrhizal fungi, Glomus intraradices and Glomus mosseae. J Am Soc Hort Sci 128: 767-775.

Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M, 2012. The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae induce systemic resistance against Cucumber mosaic virus in cucumber plants. Plant Soil

Giovannetti M, Mosse B, 1980. An evaluation of techniques for measuring vesicular-arbuscular mycorrhizal infection in roots. New Phytologist 87: 489-500.

Gur A, Cohen Y, 1989. The peach replant problem-some causal agents. Soil Biol Biochem 21: 829-834.

Hayman DS, Tavares M, 1985. Influence of soil-pH on the symbiotic efficiency of different endophytes. New Phytologist 100: 367-377.

Heyman F, Lindahl B, Persson L, Wikstrom M, Stenlid J, 2007. Calcium concentrations of soil affect suppressiveness against Aphanomyces root rot of pea. Soil Biol Biochem 39: 2222-2229.

Jeffries P, Barea JM, 2001. Arbuscular mycorrhiza: A key component of sustainable plant-soil ecosystems. In: The Mycota. Vol. 9. Fungal associations; Hock B (ed). pp: 95-113. Springer-Verlag, Berlin.

Karagiannidis N, Thomidis T, Panou-Filotheou E, 2012. Effects of Glomus lamellosum on growth, essential oil production and nutrients uptake in selected medicinal plants. J Agric Sci 4: 137-144.

Lis-Balchin, 2012. Lavender. In: Handbook of herbs and spices, 2nd edition; Peter KV (ed). Woodhead Publ., Cambridge, UK.

Lovato PE, Garcia-Figueres F, Camprubi A, Parladé J, Calvet C, 2014. A semiaxenic phototrophic system to study interactions between arbuscular mycorrhizal and pathogenic fungi in woody plants. Eur J Plant Pathol 140: 207-212.

Mallett KI, Maynard DG, 1998. Armillaria root disease, stand characteristics, and soil properties in young lodgepole pine. Forest Ecol Manage 105: 37-44.

Mansilla JP, Aguín O, Abelleira A, Saínz MJ, 2000. Adaptación de la reacción en cadena de la polimerasa (PCR) para la identificación de especies de Armillaria en Galicia. Bol San Veg Plagas 62: 79-88.

McLaughlin JA, Hsiang T, Hayden G, Greifenhagen S, 2011. Abiotic and biotic factors used to assess decline risk in red pine (Pinus resinosa Ait.) plantations. Forest Chron 87: 99-115.

Murashige T, Skoog F, 1962. A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol plantarum 15: 473-497.

Nogales A, Luque J, Estaún V, Camprubi A, Garcia-Figueres F, Calvet C, 2009. Differential growth of mycorrhizal field-inoculated grapevine rootstocks in two replant soils. Am J Enol Viticult 60: 484-489.

Nogales A, Camprubi A, Estaún V, Marfá V, Calvet C, 2010. In vitro interaction studies between Glomus intraradices and Armillaria mellea in vines. Span J Agric Res 8 (S1): S62-S68.

Phillips JM, Hayman DS, 1980. Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55: 158-161.

Pineda A, Dicke M, Pieterse CMJ, Pozo MJ, 2013. Beneficial microbes in a changing environment: are they always helping plants to deal with insects? Funct Ecol 27: 574-586.

Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Azcón-Aguilar C, Barea JM, 2002. Localized vs systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophtora infection in tomato plants. J Exp Bot 53: 525-534.

Pozo MJ, Azcón-Aguilar C, 2007. Unravelling mycorrhiza induced resistance. Curr Opin Plant Biol 10: 393-398.

Rishbeth J, 1985. Infection cycle of Armillaria and host response. Eur J Forest Pathol 15: 332-341.

Rizzo DM, Whiting EC, Elkins RB, 1998. Spatial distribution of Armillaria mellea in pear orchards. Plant Dis 82: 1226-1231.

Schausberger P, Peneder S, Jürschik S, Hoffmann D, 2012. Mycorrhiza changes plant volatiles to attract spider mite enemies. Funct Ecol 26: 441-449.

Torres-Vera R, García JM, Pozo MJ, López-Ráez JA, 2014. Do strigolactones contribute to plant defence? Mol Plant Pathol 15: 211-216.

Toussaint JP, Kraml M, Nell M, Smith SE, Smith FA, Steinkellner S, Schmiderer C, Vierheilig H, Novak J, 2008. Effect of Glomus mosseae on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with Fusarium oxysporum f.sp. basilica. Plant Pathol 57: 1109-1115.

Veresoglou SD, Bart EK, Menexes G, Rillig MC, 2013. Fertilization affects severity of disease caused by fungal plant pathogens. Plant Pathol 62: 961-969.

Voets L, Boulois HD, Renard L, Strullu DG, Declerck S, 2005. Development of an autotrophic culture system for the in vitro mycorrhization of potato plants. FEMS Microbiol 248: 111-118.

Vossen PM, 2007. Organic olive production manual. Publication 3505, University of California, USA.

Westphal A, Browne GT, Schneider S, 2002. Evidence for biological nature of grapevine replant problem in California. Plant Soil 242: 197-203.

DOI: 10.5424/sjar/2015133-7677