Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees

  • Rafael R. Sola-Guirado University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
  • Francisco Jimenez-Jimenez University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
  • Gregorio L. Blanco-Roldan University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
  • Sergio Castro-Garcia University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
  • Francisco J. Castillo-Ruiz University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
  • Jesus A. Gil-Ribes University of Cordoba. Dept. Rural Engineering. Campus de Rabanales, Ctra. Nacional IV, km 396, Cordoba
Keywords: Olea europaea L., fruit detachment, integral harvester, frequency, amplitude, removal efficiency

Abstract

The fruit harvesting is a key factor involving both product quality and profitability. Particularly, mechanical harvesting of traditional oil olive orchards is hint by tree training system for manual harvesting, tree size and several and slanted trunks which makes difficult trunk shaker work. Therefore, canopy shaker technology could be a feasible alternative to develop an integral harvester able to work on irregular canopies. The aim of this research was to determine vibration parameters applied to the olive tree for efficient mechanical harvesting by canopy shaker measuring fruit removal efficiency and debris. In this work, a continuous lateral canopy shaker harvester has been developed and tested on large olive trees in order to analyse the operating harvester parameters and tree properties to improve mutual adaptation. Vibration amplitude and frequency, rod density and ground speed were assessed. Vibration amplitude and frequency beside ground speed were decisive factors on fruit removal efficiency. Increasing rod density has not influenced on removal efficiency although it increased significantly debris. Promising results has been reached with 77.3% of removal efficiency, applying a 28 s shaking duration, 0.17 m amplitude vibration and 12 rod drum. This result was obtained reporting 0.26 s of accumulative shaking time over 200 m/s2 resultant acceleration. The canopy shaker mechanism enabled more than 65% of detached fruits to fall vertically, facilitating catch fruit. In order to improve removal efficiency it is advisable to adapt trees, set high amplitude in the shaker mechanism, and enhance the contact time between rods and tree.

Downloads

Download data is not yet available.

References

Adrian PA, Fridley RB, 1965. Dynamics and design criteria of inertia type tree shakers. T ASABE 8: 12-14.

AEMO, 2012. Aproximación a los costes de los distintos sistemas del cultivo del olivo. Asociación Española de Municipios del Olivo. http://www.aemo.es/ [10 October 2014].

AICA, 2014. Información de mercados: producción. Agencia de Información y Control Alimentarios. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.gob.es [10 October 2014].

Agüera-Vega J, Blanco-Roldán GL, Castillo-Ruiz FJ, Castro-Garcia S, Gil-Ribes JA, Perez-Ruiz M, 2013. Determination of field capacity and yield mapping in olive harvesting using remote data acquisition. Precision Agriculture'13. pp: 691-696.

Barranco D, Fernández-Escobar R, Rallo L, 2010. Olive Growing. Mundi-Prensa, Junta de Andalucía, Australian Olive Association Ltd., Pendle Hill NSW, Australia. 756 pp.

Blanco-Roldán GL, Gil-Ribes JA, Kouraba K, Castro-Garcia S, 2009. Effects of trunk shaker duration and repetitions on removal efficiency for the harvesting of oil olives. App Eng Agric 25(3): 329-334. http://dx.doi.org/10.13031/2013.26883

Beltrán-Esteve M, 2013. Assessing technical efficiency in traditional olive grove systems: a directional metadistance function approach. Agric Resour Ec 13(2): 53-76. http://dx.doi.org/10.7201/earn.2013.02.03

Bernardi B, Giametta F, Sciarrone G, 2008. Innovations in mechanization and control systems of production in olive sector. Agric Eng Int: the CIGR Journal 10: MES 08 003.

Brown GK, 2005. New mechanical harvester for the Florida citrus juice industry. HortTechnology 15(1): 69-72.

Castro-Garcia S, Rosa UA, Gliever CJ, Smith D, Burns JK, Krueger WH., Ferguson L, Glozer K, 2009. Video evaluation of table olive damage during harvest with a canopy shaker. HortTechnology 19(2): 260-266.

Du X, Chen Q, Zhang P, Scharf Z, Whitting MD, 2012. Dynamic responses of sweet cherry trees under vibratory excitations. Biosyst Eng 111(3): 305-314. http://dx.doi.org/10.1016/j.biosystemseng.2011.12.009

El-Awady M, Genaidy M, Rashowan M, El-Attar M, 2008. Modeling and simulating of olive-tree harvesting mechanism. Misr J Agric Eng 25(3): 712-722.

ESYRCE, 2013. Encuesta sobre superficies y rendimientos cultivos (ESYRCE). Encuesta de Marco de Áreas de España. Ministerio de Agricultura, Alimentación y Medio Ambiente. http://www.magrama.gob.es/es/estadistica/temas/estadisticas-agrarias/agricultura/esyrce/ [10 November 2014].

Famiani F, Farinelli D, Rollo S, Camposeo S, Di Vaio C, Inglese P, 2014. Evaluation of different mechanical fruit harvesting systems and oil quality in very large size olive trees. Span J Agric Res 12(4): 960-972. http://dx.doi.org/10.5424/sjar/2014124-5794

Farinelli D, Tombesi S, Famiani F, Tombesi A, 2012. The fruit detachment force/fruit weight ratio can be used to predict the harvesting yield and the efficiency of trunk shakers on mechanical olive harvesting. Acta Hortic 965: 61-64. http://dx.doi.org/10.17660/ActaHortic.2012.965.5

Ferguson L, 2006. Trends in olive fruit handling previous to its industrial transformation. Grasas y Aceites 57(1): 9-15. http://dx.doi.org/10.3989/gya.2006.v57.i1.17

Ferguson L, Rosa UA, Castro-Garcia S, Lee SM, Guinard JX, Burns J, Krueger WH, O'Connell NV, Glozer K, 2010. Mechanical harvesting of California table and oil olives. Adv Hortic Sci 24: 53-63.

Ferguson L, Glozer K, Crisosto C, Rosa UA, Castro-Garcia S, Fichtner EJ, Guinard JX, Lee SM, Krueger WH, Miles JA, Burns JK, 2012. Improving canopy contact olive harvester efficiency with mechanical pruning. Acta Hortic 965: 83-87. http://dx.doi.org/10.17660/ActaHortic.2012.965.8

Gil-Ribes JA, Ferguson L, Castro-Garcia S, Blanco-Rodán GL, 2014. How agricultural engineers develop mechanical harvesters: the university perspective. HortTechnology 24(3): 270-273.

Gómez-Limón JA, Riesgo L, 2010. Sustainability assessment of olive grove in Andalusia: A methodological proposal. Proc 120th EAAE Seminar, Chania, Crete (Greece), Sept 2-4. pp: 1-26.

Gupta SK, Ehsani R, Kim NH, 2015. Optimization of a citrus canopy shaker harvesting system: properties and modeling of tree limbs. T ASABE 58(4): 971-985.

He L, Zhou J, Zhang Q, Karkee M, 2013. Evaluation of multi-pass mechanical harvest on sweet cherry. Proc American Society of Agricultural and Biological Engineers. Kansas City, Missouri, US. pp: 2418-2425

Hong MY, Rosa UA, Upadhyaya SK, 2012. Optimum operating parameters for a rotary drum shaker for harvesting Jatropha curcas L. T ASABE 55(6): 2051-2058.

Kouraba K, Gil-Ribes JA, Blanco-Roldán GL, Jaime-Revuelta MA, Barranco-Navero D, 2004. Suitability of olive varieties for mechanical harvester shaking. Olivae 101: 39-43.

Jiménez-Jiménez F, Castro-Garcia S, Blanco-Roldán GL, González-Sánchez EJ, Gil-Ribes JA, 2013. Isolation of table olive damage causes and bruise time evolution during fruit detachment with trunk shaker. Span J Agric Res 11(1): 65-71. http://dx.doi.org/10.5424/sjar/2013111-3399

Mariscal MJ, Orgaz F, Villalobos FJ, 2000. Modelling and measurement of radiation interception by olive canopies. Agric Forest Meteorol 100(2): 183-197. http://dx.doi.org/10.1016/S0168-1923(99)00137-9

Mateev LM, Kostadinov GD 2004. Probabilistic model of fruit removal during vibratory Morello harvesting. Biosyst Eng 87: 425-435. http://dx.doi.org/10.1016/j.biosystemseng.2004.01.006

Pergola M, Favia M, Palese AM, Perretti B, Xiloyannis C, Celano G, 2013. Alternative management for olive orchards grown in semi-arid environments: An energy, economic and environmental analysis. Sci Hortic-Amsterdam 162: 380-386. http://dx.doi.org/10.1016/j.scienta.2013.08.031

Peterson DL, 1998. Mechanical harvester for process oranges. Appl Eng Agric 14 (4): 455–458 http://dx.doi.org/10.13031/2013.19409

Polat R, Gezer I, Guner M, Dursun E, Erdogan D, Bilim HC, 2007. Mechanical harvesting of pistachio nuts. J Food Eng 79(4): 1131-1135. http://dx.doi.org/10.1016/j.jfoodeng.2006.03.023

Ramos AF, Santos FL, 2010. Yield and olive oil characteristics of a low-density orchard (cv. Cordovil) subjected to different irrigation regimes. Agric Water Manage 7(2): 363-373. http://dx.doi.org/10.1016/j.agwat.2009.10.008

Ravetti L, Robb S, 2010. Continuous mechanical harvesting in modern Australian olive growing systems. Adv Hort Sci 24(1): 71-77.

Rosa UA, Cheetancheri KG, Gliever CJ, Lee SH, Thompson J, Slaughter DC, 2008. An electro-mechanical limb shaker for fruit thinning. Comput Electron Agric 61(2): 213-221. http://dx.doi.org/10.1016/j.compag.2007.11.008

Savary S K J U, Ehsani R, Schueller JK, Rajaraman B P, 2010. Simulation study of citrus tree canopy motion during harvesting using a canopy shaker. T ASABE 53(5): 1373-1381. http://dx.doi.org/10.13031/2013.34892

Savary SKJ, Ehsani R, Salyani M, Hebel MA, Bora GC, 2011. Study of force distribution in the citrus tree canopy during harvest using a continuous canopy shaker. Comput Electron Agric 76(1): 51-58. http://dx.doi.org/10.1016/j.compag.2011.01.005

Shamshiri R, Ehsani R, Maja JM, Roka FM, 2013. Determining machine efficiency parameters for a citrus canopy shaker using yield monitor data. App Eng Agric 29(1): 33-41. http://dx.doi.org/10.13031/2013.42526

Smith EA, Ramsay AM, 1983. Forces during fruit removal by a mechanical raspberry harvester. J Agric Eng Res 28(1): 21-32. http://dx.doi.org/10.1016/0021-8634(83)90097-5

Sola-Guirado RR, Castro-García S, Blanco-Roldán GL, Jiménez-Jiménez F, Castillo-Ruiz FJ, Gil-Ribes JA, 2014. Traditional olive tree response to oil olive harvesting technologies. Biosyst Eng, 118: 186-193. http://dx.doi.org/10.1016/j.biosystemseng.2013.12.007

Spann TM, Danyluk MD, 2010. Mechanical harvesting increases leaf and stem debris in loads of mechanically harvested citrus fruit. HortSci, 45(8): 1297-1300.

Sumner HR, Whitney JD, Hedden SL, 1975. Foliage shaker for citrus harvesting. I: Design and kinematics of shaker drive system. T ASAE 18(1): 66-69. http://dx.doi.org/10.13031/2013.36526

Takeda F, Peterson DL, 1999. Considerations for machine harvesting fresh-market eastern thornless blackberries: Trellis design, cane training systems, and mechanical harvester developments. HortTechnology 9(1): 16-21.

Torregrosa A, Porras I, Martín B, 2010. Mechanical harvesting of lemons cv. Fino, in Spain, using abscission agents. T ASABE 53(3): 703-708. http://dx.doi.org/10.13031/2013.30062

Vieri M, Sarri D, 2010. Criteria for introducing mechanical harvesting of oil olives: results of a five-year project in Central Italy. Adv Hortic Sci 24(1): 78-90.

Villalobos FJ, Orgaz F, Testi L, Fereres E, 2000. Measurement and modeling of evapotranspiration of olive (Olea europaea L.) orchards. Eur J Agron 13(2): 155-163. http://dx.doi.org/10.1016/S1161-0301(00)00071-X

Visco T, Molfese M, Cipolletti M, Corradetti R, Tombesi A, 2008. The influence of training system, variety and fruit ripening on the efficiency of mechanical harvesting of young olive trees in Abruzzo, Italy. Acta Hortic 791: 425-429. http://dx.doi.org/10.17660/ActaHortic.2008.791.63

Whitney JD, 1999. Field test results with mechanical harvesting equipment in Florida oranges. Ap Eng Agric 15 (3): 205-210. http://dx.doi.org/10.13031/2013.5766

Whitney JD, Churchill DB, Hedden SL, 1986. Proc Fla State Hort Soc 99: 40-44.

Wiesman Z, 2009. Economic aspects of desert olive oil cultivation. In: Desert olive oil cultivation: Advanced BioTechnologies. pp: 355-365. Academic Press, San Diego, USA. http://dx.doi.org/10.1016/B978-0-12-374257-5.00015-4

Zhou J, He L, Zhang Q, Du X, Chen D, Karkee M, 2013. Evaluation of the influence of shaking frequency and duration in mechanical harvesting of sweet cherry. App Eng Agric 29(5): 607-612.

Zhou J, He L, Zhang Q, Karkee M, 2014. Effect of excitation position of a handheld shaker on fruit removal efficiency and damage in mechanical harvesting of sweet cherry. Biosyst Eng 125: 36-44. http://dx.doi.org/10.1016/j.biosystemseng.2014.06.016

Published
2016-06-01
How to Cite
Sola-Guirado, R. R., Jimenez-Jimenez, F., Blanco-Roldan, G. L., Castro-Garcia, S., Castillo-Ruiz, F. J., & Gil-Ribes, J. A. (2016). Vibration parameters assessment to develop a continuous lateral canopy shaker for mechanical harvesting of traditional olive trees. Spanish Journal of Agricultural Research, 14(2), e0204. https://doi.org/10.5424/sjar/2016142-7909
Section
Agricultural engineering