Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production

  • Nahuel R. Peralta (1) CONICET, Av. Rivadavia 1917, CP C1033AAJ, Buenos Aires (2) FCA-UNMdP, Faculty of Agricultural Sciences-National University of Mar del Plata. Ruta Nacional 226 km 73.5, C.C. 276, CP 7620, Balcarce, Buenos Aires
  • Pablo L. Cicore (3) INTA, Balcarce Experimental Station. Ruta Nacional 226 km 73.5, C.C. 276, CP 7620, Balcarce, Buenos Aires
  • Maria A. Marino (2) FCA-UNMdP, Faculty of Agricultural Sciences-National University of Mar del Plata. Ruta Nacional 226 km 73.5, C.C. 276, CP 7620, Balcarce, Buenos Aires
  • Jose R. Marques da Silva (4) University of Évora, ICAAM, Escola de Ciências e Tecnologia, Apartado 94, 7002-554, Évora. (5) Applied Management and Space Centre for Interdisciplinary Development and Research on Environment (DREAMS), Lisboa. (6) CITI, Rua Romão Ramalho, 59 7000-671 Évora.
  • Jose L. Costa (2) FCA-UNMdP, Faculty of Agricultural Sciences-National University of Mar del Plata. Ruta Nacional 226 km 73.5, C.C. 276, CP 7620, Balcarce, Buenos Aires (3) INTA, Balcarce Experimental Station. Ruta Nacional 226 km 73.5, C.C. 276, CP 7620, Balcarce, Buenos Aires
Keywords: multivariate techniques, soil properties, geographic information system, lowland soils, spatial variability

Abstract

The spatial variability in soils used for livestock production (i.e. Natraquoll and Natraqualf) at farm and paddock scale is usually very high. Understanding this spatial variation within a field is the first step for site-specific crop management. For this reason, we evaluated whether apparent electrical conductivity (ECa), a widely used proximal soil sensing technology, is a potential estimator of the edaphic variability in these types of soils. ECa and elevation data were collected in a paddock of 16 ha. Elevation was negatively associated with ECa. Geo-referenced soil samples were collected and analyzed for soil organic matter (OM) content, pH, the saturation extract electrical conductivity (ECext), available phosphorous (P), and anaerobically incubated Nitrogen (Nan). Relationships between soil properties and ECa were analyzed using regression analysis, principal components analysis (PCA), and stepwise regression. Principal components (PC) and the PC-stepwise were used to determine which soil properties have an important influence on ECa. In this experiment elevation was negatively associated with ECa. The data showed that pH, OM, and ECext exhibited a high correlation with ECa (R2=0.76; 0.70 and 0.65, respectively). Whereas P and Nan showed a lower correlation (R2=0.54 and 0.11 respectively). The model resulting from the PC-stepwise regression analysis explained slightly more than 69% of the total variation of the measured ECa, only retaining PC1. Therefore, ECext, pH and OM were considered key latent variables because they substantially influence the relationship between the PC1 and the ECa (loading factors>0.4). Results showed that ECa is associated with the spatial distribution of some important soil properties. Thus, ECa can be used as a support tool to implement site-specific management in soils for livestock use.

Downloads

Download data is not yet available.

References

Batista WB, Taboada MA, Lavado RS, Perelman SB, León RJC, 2005. Asociación entre comunidades vegetales y suelos de pastizal de la Pampa Deprimida. In: La heterogeneidad de la vegetación de los agroecosistemas. Un homenaje a Rolando J. León; Oesterheld M, Aguiar MR, Ghersa CM, Paruelo JM (eds). pp: 113-129. Facultad de Agronomía, UBA, Buenos Aires.

Bray RH, Kurtz LT, 1945. Determination of total, organic and available forms of phosphate in soils. Soil Sci 59: 39-45. http://dx.doi.org/10.1097/00010694-194501000-00006

Brunsdon C, Fotheringham AS, Charlton M, 2002. Geographically weighted summary statistics: A framework for localized exploratory data analysis. Comp Environ Urban Syst 26: 501-524. http://dx.doi.org/10.1016/S0198-9715(01)00009-6

Bullock DS, Ruffo ML, Bullock DG, Bollero GA, 2009. The value of variable rate technology: An information-theoretical approach. Am J Agr Econ 21: 209-223. http://dx.doi.org/10.1111/j.1467-8276.2008.01157.x

Chapman HD, 1965. Cation-exchange capacity. In: Methods of soil analysis. Chemical and microbiological properties; Black CA (ed). Am Soc of Agronomy Inc., Madison, Vol. 9, pp: 891-901.

Corwin DL, Lesch SM, 2005a. Characterizing soil spatial variability with apparent soil electrical conductivity. Part II. Case study. Comp Electron Agric 46: 135-152. http://dx.doi.org/10.1016/j.compag.2004.11.003

Corwin DL, Lesch SM, 2005b. Characterizing soil spatial variability with apparent soil electrical conductivity. Part I. Survey protocols. Comp Electron Agric 46: 103-133. http://dx.doi.org/10.1016/j.compag.2004.11.002

Corwin DL, Kaffka SR, Hopmansc JW, Morid Y, van Groenigene JW, van Kesselb C, Lescha SM, Osterf JD, 2003. Assessment and field-scale mapping of soil quality properties of a saline-sodic soil. Geoderma 114: 231-259. http://dx.doi.org/10.1016/S0016-7061(03)00043-0

Doll UM, Deregibus VA, 1986. Efecto de la exclusión del pastoreo sobre el sistema subterráneo de un pastizal templado húmedo. Turrialba 36: 337-344.

Echeverría HE, San Martin N, Bergonzi R, 2000. Métodos rápidos de estimación del nitrógeno potencialmente mineralizable en suelos. Ciencia del Suelo 18: 9-16.

ESRI, 2009. ArcGis 9.0, Arc Map vers. 9.3. Environ Syst Res Inst. http://www.esri.com/. [6/3/2010].

Farahani HJ, Flynn RL, 2007. Map quality and zone delineation as affected by width of parallel swaths of mobile agricultural sensors. Precis Agric 96: 151-159. http://dx.doi.org/10.1016/j.biosystemseng.2006.10.010

Heiniger RW, McBride RG, Clay DE, 2003. Using soil electrical conductivity to improve nutrient management. Agron J 95: 508-519. http://dx.doi.org/10.2134/agronj2003.0508

Hossain M, Lamb DW, Lockwood PV, Frazier P, 2010. EM38 for volumetric soil water content estimation in the root-zone of deep vertosol soils. Comp Electron Agric 74: 100-109. http://dx.doi.org/10.1016/j.compag.2010.07.003

Isaaks EH, Srivastava RM, 1989. An introduction to applied geostatistics. Oxford University Press, NY. 561 p.

Jung WK, Kitchen NR, Sudduth KA, Kremer RJ Motavalli PP, 2005. Relationship of apparent electrical conductivity to claypan soil properties. Soil Sci Soc Am J 69: 883-892. http://dx.doi.org/10.2136/sssaj2004.0202

Kaffka SR, Lesch SM, Bali KM, Corwin DL, 2005. Site-specific management in salt-affected sugar beet fields using electromagnetic induction. Comp Electron Agric 46: 329-350. http://dx.doi.org/10.1016/j.compag.2004.11.013

King J, Dampney P, Lark R, Wheeler H, Bradley R, Mayr T, 2005. Mapping potential crop management zones within fields: use of yield-map series and patterns of soil physical properties identified by electromagnetic induction sensing. Precis Agric 6: 167-181. http://dx.doi.org/10.1007/s11119-005-1033-4

Kitchen NR, Sudduth KA, Drummond ST, 2000. Characterizing soil physical and chemical properties influencing crop yield using soil electrical conductivity. 2nd Int. Geospatial Inform. in Agriculture and Forestry Conf. Lake Buena Vista, FL, USA, pp: 122−131.

Kitchen NR, Sudduth KA, Myers DB, Drummond ST, Hong S, 2005. Delineating productivity zones on claypan soil fields using apparent soil electrical conductivity. Comp Electron Agric 46: 285-308. http://dx.doi.org/10.1016/j.compag.2004.11.012

Moral FJ, Terrón JM, Marques da Silva JR, 2010. Delineation of management zones using mobile measurements of soil apparent electrical conductivity and multivariate geostatistical techniques. Soil Till Res 106: 335-343. http://dx.doi.org/10.1016/j.still.2009.12.002

Officer SJ, Kravchenko A, Bollero GA, Sudduth KA, Kitchen NR, Wiebold WJ, Palm HL, Bullock DG, 2004. Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values. Plant Soil 258: 269-280. http://dx.doi.org/10.1023/B:PLSO.0000016557.94937.ed

Peralta NR, Costa JL, 2013. Delineation of management zones with soil apparent electrical conductivity to improve nutrient management. Comp Electron Agric 99: 218-226. http://dx.doi.org/10.1016/j.compag.2013.09.014

Peralta NR, Costa JL, Balzarini M, Angelini H, 2013. Delineation of management zones with measurements of soil apparent electrical conductivity in the southeastern pampas. Can J Soil Sci 93: 205-218. http://dx.doi.org/10.4141/cjss2012-022

Peralta NR, Costa JL, Balzarini1 M, Castro Franco M, Córdoba M, Bullock D, 2015. Delineation of management zones to improve nitrogen management of wheat. Comp Electron Agric 110: 103-113. http://dx.doi.org/10.1016/j.compag.2014.10.017

Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ, 1989. Soil electrical conductivity and soil salinity: New formulations and calibrations. Soil Sci Soc Am J 53: 433-439. http://dx.doi.org/10.2136/sssaj1989.03615995005300020020x

SAS Inst. 2007. SAS/STAT-JMP Users Guide. Release 7. SAS Institute Inc., Cary, NC, USA. 506 pp.

Satorre EH, Slafer GA, 1999. Wheat production systems of the Pampas. In: Wheat: Ecology and physiology of yield determination; Satorre EM, Slafer GA (eds). pp: 333-348. The Haworth Press, Inc., NY.

Serrano J, Peca J, Marques da Silva J, Shaidian S, 2010. Mapping soil and pasture variability with an electromagnetic induction sensor. Comp Electron Agric 73: 7-16. http://dx.doi.org/10.1016/j.compag.2010.03.008

Serrano J, Shahidian S, Marques da Silva JR, 2013. Small scale soil variation and its effect on pasture yield in southern Portugal. Geoderma 195: 173-183. http://dx.doi.org/10.1016/j.geoderma.2012.12.001

Serrano J, Marques da Silva J, Shahidian S, 2014a. Spatial and temporal patterns of potassium on grazed permanent pastures-Management challenges. Agr Ecosyst Environ 188: 29-39. http://dx.doi.org/10.1016/j.agee.2014.02.012

Serrano J, Shahidian S, Marques da Silva J, 2014b. Spatial and temporal patterns of apparent electrical conductivity: DUALEM vs. Veris sensors for monitoring soil properties. Sensors 14: 10024-10041. http://dx.doi.org/10.3390/s140610024

Simón M, Peralta NR, Costa JL, 2013. Relación entre la conductividad eléctrica aparente con propiedades del suelo y nutrientes. Ciencia del Suelo 31: 45-55.

Soil Survey Staff, 2010. Keys to soil taxonomy, 11th ed. USDA-NRCS. USA. 939 pp.

Sudduth KA, Kitchen NR, Bollero GA, Bullock DG, Wiebold WJ, 2003. Comparison of electromagnetic induction and direct sensing of soil electrical conductivity. Agron J 95: 472-482. http://dx.doi.org/10.2134/agronj2003.0472

Sudduth KA, Kitchen NR, Wiebold WJ, Batchelor WD, Bollero GA, Bullock DG, Clay DE, Palm HL, Pierce FJ, Schuler RT Thelen KD, 2005. Relating apparent electrical conductivity top soil properties across the North-Central USA. Comp Electron Agric 46: 263-283. http://dx.doi.org/10.1016/j.compag.2004.11.010

Taboada MA, 2006. Soil structural behaviour in flooded and agricultural soils of the Argentine Pampas. Doctoral Thesis. Institut National Polytechnique de Toulouse, France. 345 pp.

Tarr AB, Moore KJ, Bullock DG, Dixon PM, 2005. Improving map accuracy of soil variables using soil electrical conductivity as a covariate. Precis Agric 6: 255-270. http://dx.doi.org/10.1007/s11119-005-1385-9

Terrón JM, Marques da Silva JR, Moral FJ, García-Ferrer A, 2011. Soil apparent electrical conductivity and geographically weighted regression for mapping soil. Precis Agric 12: 750-761. http://dx.doi.org/10.1007/s11119-011-9218-5

Vazquez PM, Costa JL, Monterubbianesi G, Godz P, 2001. Predicción de la productividad primaria de pastizales naturales de la pampa deprimida utilizando propiedades del horizonte A. Ciencia del Suelo 19: 136-143.

Walkley A, Black IA, 1934. An examination of the Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid titration method. Soil Sci 37: 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003

Wilding LP, Bouma J, Goss DW, 1994. Impact of spatial variability on interpretive modeling. In: Quantitative modeling of soil forming processes; Bryant RB, Arnold RW (Eds). pp: 61-75. SSSA Spec. Publ. 39. ASA, CSSA, and SSSA, Madison, WI, USA.

Published
2015-12-02
How to Cite
Peralta, N. R., Cicore, P. L., Marino, M. A., Marques da Silva, J. R., & Costa, J. L. (2015). Use of geophysical survey as a predictor of the edaphic properties variability in soils used for livestock production. Spanish Journal of Agricultural Research, 13(4), e1103. https://doi.org/10.5424/sjar/2015134-8032
Section
Soil science