Influence of cover crop treatments on the performance of a vineyard in a humid region

  • Emiliano Trigo-Córdoba Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL). Ponte San Clodio s/n, 32428 Leiro (Ourense)
  • Yolanda Bouzas-Cid Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL). Ponte San Clodio s/n, 32428 Leiro (Ourense)
  • Ignacio Orriols-Fernández Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL). Ponte San Clodio s/n, 32428 Leiro (Ourense)
  • Emilia Díaz-Losada Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL). Ponte San Clodio s/n, 32428 Leiro (Ourense)
  • Jose M. Mirás-Avalos Estación de Viticultura e Enoloxía de Galicia (EVEGA-INGACAL). Ponte San Clodio s/n, 32428 Leiro (Ourense)
Keywords: berry composition, cover crops, Mencía grapevine, tillage, sustainability, wine composition

Abstract

Vineyards are usually managed by tilling the inter-rows to avoid competition from other plants for soil water and nutrients. However, in humid and sub-humid climates, such as that of NW Spain, cover crops may be an advantage for controlling vine vegetative growth and improving berry composition, while reducing management costs. The current study was conducted over three consecutive growing seasons (2012-2014) to assess the effects of establishing three permanent cover crop treatments on water relations, vine physiology, yield and berry composition of a vineyard of the red cultivar ‘Mencía’ (Vitis vinifera L.) located in Leiro, Ourense. Treatments consisted of four different soil management systems: ST, soil tillage; NV, native vegetation; ER, English ryegrass (Lolium perenne L.); and SC, subterranean clover (Trifolium subterraneum L.). Midday stem water potential was more negative in the native vegetation treatment, causing significant reductions in leaf stomatal conductance on certain dates. Total vine leaf area and pruning weight was reduced in the cover crop treatments in the last year of the experiment. Yield was unaffected by the presence of a cover crop. No significant differences among treatments were observed for berry composition; however, wines were positively affected by the SC treatment (higher tannin content and colour intensity and lower malic acid concentration when compared with ST). Wines from the cover crop treatments were preferred by taste panelists. These results indicate that in humid climates cover crop treatments can be useful for reducing vine vegetative growth without compromising yield and berry quality.

Downloads

Download data is not yet available.

References

Benzécri JP, 1992. Correspondence analysis handbook. Marcel Dekker, NY. 665 pp.

Buckley TN, Martorell S, Díaz-Espejo A, Tomàs M, Medrano H, 2014. Is stomatal conductance optimized over both time and space in plant crowns? A field test in grapevine (Vitis vinifera). Plant Cell Environ 37: 2707-2721. http://dx.doi.org/10.1111/pce.12343

Caspari HW, Neal S, Naylor A, 1997. Cover crop management in vineyards to enhance deficit irrigation in a humid climate. Acta Hortic 449: 313-320. http://dx.doi.org/10.17660/ActaHortic.1997.449.44

Cavender-Bares J, Bazzaz FA, 2004. From leaves to ecosystems: using chlorophyll fluorescence to assess photosynthesis and plant function in ecological studies. In: Chlorophyll a fluorescence: a signature of photosynthesis; Papageorgiou GC, Govindjee G. (eds.), pp: 737-755. Springer. http://dx.doi.org/10.1007/978-1-4020-3218-9_29

Celette F, Wery J, Chantelot E, Celette J, Gary C, 2005. Belowground interactions in a vine (Vitis vinifera L.)-tall fescue (Festuca arundinacea Shreb.) intercropping system: water relations and growth. Plant Soil 276: 205-217. http://dx.doi.org/10.1007/s11104-005-4415-5

Celette F, Gaudin R, Gary C, 2008. Spatial and temporal changes to the water regime of a Mediterranean vineyard due to the adoption of cover cropping. Eur J Agron 29: 153-162. http://dx.doi.org/10.1016/j.eja.2008.04.007

Celette F, Fielding A, Gary C, 2009. Competition for nitrogen in an unfertilized intercropping system: the case of an association of grapevine and grass cover in a Mediterranean climate. Eur J Agron 30: 41-51. http://dx.doi.org/10.1016/j.eja.2008.07.003

Choné X, van Leeuwen C, Dubourdieu D, Gaudillère JP, 2001. Stem water potential is a sensitive indicator of grapevine water status. Ann Bot 87(4): 477-483. http://dx.doi.org/10.1006/anbo.2000.1361

de Souza CR, Maroco JP, dos Santos TP, Rodríguez ML, Lopes CM, Pereira JS, Chaves MM, 2003. Partial rootzone drying: regulation of stomatal aperture and carbon assimilation in field-grown grapevines (Vitis vinifera cv. Moscatel). Funct Plant Biol 30: 653-662. http://dx.doi.org/10.1071/FP02115

Dokoozlian NK, Kliewer WM, 1996. Influence of light on grape berry growth and composition varies during fruit development. J Am Soc Hortic Sci 121: 869-874.

Dry PR, Loveys BR, 1998. Factors influencing grapevine vigour and the potential for control with partial rootzone drying. Aust J Grape Wine Res 4: 140-148. http://dx.doi.org/10.1111/j.1755-0238.1998.tb00143.x

Fraga H, Malheiro AC, Moutinho-Pereira J, Cardoso RM, Soares PMM, Cancela JJ, Pinto JG, Santos JA, 2014. Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural region. PLOS One 9(9): e108708. http://dx.doi.org/10.1371/journal.pone.0108078

Glories Y, 1984. La couleur des vins rouges, 2eme partie. Connaiss Vigne Vin 18: 253-271.

Ibáñez Pascual S, 2013. Gestión del suelo en viñedo mediante cubiertas vegetales. Incidencia sobre el control del rendimiento y el vigor. Aspectos ecofisiológicos, nutricionales, microclimáticos y de calidad del mosto y del vino. Doctoral Thesis. Univ. La Rioja, Spain.

Intrigliolo DS, Castel JR, 2009. Response of Vitis vinifera cv. 'Tempranillo' to partial rootzone drying in the field: water relations, growth, yield and fruit and wine quality. Agric Water Manage 96: 282-292. http://dx.doi.org/10.1016/j.agwat.2008.08.001

Intrigliolo DS, Castel JR, 2010. Response of grapevine cv. 'Tempranillo' to timing and amount of irrigation: water relations, vine growth, yield and berry and wine composition. Irrig Sci 28: 113-125. http://dx.doi.org/10.1007/s00271-009-0164-1

Inzerillo S, Oddo E, Pollina L, Abate L, Carimi F, Sajeva M, Nardini A, 2014. Leaf water relation traits in typical Sicilian varieties of Vitis vinifera L. XIII Congress Federazione Italiana Scienze della Vita. Pisa, Italy. pp: 100.

Lopes CM, Monteiro A, Machado JP, Fernandes N, Araujo A, 2008. Cover cropping in a sloping non-irrigated vineyard: II – Effects on vegetative growth, yield, berry and wine quality of 'Cabernet Sauvignon' grapevines. Ciência Téc Vitiv 23(1): 37-43.

Maigre D, 1996. Influence de l'enherbement et de la fumure azotée sur la qualité des vins de Chasselas. Prog Agric Vitic 114: 255–258.

Maigre D, Aern J, 2001. Enherbement permanent et fumure azotée sur cv. 'Gamay' dans le Valais Central. Revue Suisse Vitic Arboric Hortic 33: 343-349.

Marques MJ, García-Muñoz S, Muñoz-Organero G, Bienes R, 2010. Soil conservation beneath grass cover in hillside vineyards under Mediterranean climatic conditions (Madrid, Spain). Land Deg Develop 21: 122-131. http://dx.doi.org/10.1002/ldr.915

Maxwell K, Johnson GN, 2000. Chlorophyll fluorescence – A practical guide. J Exp Bot 51: 659-668. http://dx.doi.org/10.1093/jexbot/51.345.659

Mirás-Avalos JM, Paz-González A, Dafonte-Dafonte J, Vidal-Vázquez E, Valcárcel-Armesto M, 2009. Concentrated flow erosion as a main source of sediments in Galicia, Spain. Earth Surf Proc Land 34(15): 2087-2095. http://dx.doi.org/10.1002/esp.1903

Mirás-Avalos JM, Trigo-Córdoba E, Bouzas-Cid Y, 2014. Does predawn water potential discern between irrigation treatments in Galician white grapevine cultivars? J Int Sci Vigne Vin 48(2): 123-127.

Monteiro A, Lopes CM, 2007. Influence of cover crop on water use and performance of vineyard in Mediterranean Portugal. Agric Ecosys Environ 121: 336-342. http://dx.doi.org/10.1016/j.agee.2006.11.016

Monteiro A, Lopes CM, Machado JP, Fernandes N, Araújo A, Moreira I, 2008. Cover cropping in a sloping, non-irrigated vineyard: I – Effects on weed composition and dynamics. Ciência Téc Vitiv 23(1): 29-36.

Morlat R, Jacquet A, 2003. Grapevine root system and soil characteristics in a vineyard maintained long-term with or without interrow sward. Am J Enol Vitic 54: 1-7.

Moutinho-Pereira J, Correia CM, Gonçalves B, Bacelar EA, Coutinho JF, Ferreira HF, Lousada JL, Cortez MI, 2012. Impacts of leafroll-associated viruses (GLRaV-1 and –3) on the physiology of the Portuguese grapevine cultivar 'Touriga Nacional' growing under field conditions. Ann App Biol 160: 237-249. http://dx.doi.org/10.1111/j.1744-7348.2012.00536.x

Myers BJ, 1988. Water stress integral a link between short-term stress and long term growth. Tree Physiol 4: 315-323. http://dx.doi.org/10.1093/treephys/4.4.315

OIV, 2009. Recueil des méthodes internationales d'analyses des vins et des moûts. Office International de la Vigne et du Vin, Paris.

Peregrina F, Larrieta C, Ibáñez S, García-Escudero E, 2010. Labile organic matter, aggregates, and stratification ratios in a semiarid vineyard with cover crops. Soil Sci Soc Am J 74: 2120-2130. http://dx.doi.org/10.2136/sssaj2010.0081

R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org.

Rogiers SY, Greer DH, Hutton RJ, Landsberg JJ, 2009. Does night-time transpiration contribute to anisohydric behaviour in a Vitis vinifera cultivar? J Exp Bot 60(13): 3751-3763. http://dx.doi.org/10.1093/jxb/erp217

Romero P, Fernández-Fernández JI, Martínez-Cutillas A, 2010. Physiological thresholds for efficient regulated deficit-irrigation management in winegrapes grown under semiarid conditions. Am J Enol Vitic 61(3): 300-312.

Ruiz-Colmenero M, Bienes R, Marques MJ, 2011. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Till Res 117: 211-223. http://dx.doi.org/10.1016/j.still.2011.10.004

Sánchez-de-Miguel P, Baeza P, Junquera P, Lissarrague JR, 2010. Vegetative development: Total leaf area and surface area indexes. In: Methodologies and results in grapevine research; Delrot S, Medrano H, Or E, Bavaresco L, Grando S (eds.). pp: 31-44. Springer, Dordrecht. http://dx.doi.org/10.1007/978-90-481-9283-0_3

Schneider CH, 1989. Introduction à l'écologie viticole. Application aux systèmes de conduite. Bulletin de l'OIV 701-702: 498-515.

Smart RE, Robinson M, 1991. Sunlight into wine. A handbook for winegrape canopy management. Ed. Winetitles, Adelaide, Australia, 88 pp.

Steele MR, Gitelson AA, Rundquist DC, 2008. A comparison of two techniques for nondestructive measurement of chlorophyll content in grapevine leaves. Agron J 100(3): 779-782. http://dx.doi.org/10.2134/agronj2007.0254N

Teszlák P, Kocsis M, Gaál K, Nikfardjam MP, 2013. Regulatory effects of exogenous gibberellic acid (GA3) on water relations and CO2 assimilation among grapevine (Vitis vinifera L.) cultivars. Sci Hortic 159: 41-51. http://dx.doi.org/10.1016/j.scienta.2013.04.037

van den Berg AK, Perkins TD, 2004. Evaluation of a portable chlorophyll meter to estimate chlorophyll and nitrogen contents in sugar maple (Acer saccharum Marsh.) leaves. Forest Ecol Manag 200: 113-117. http://dx.doi.org/10.1016/j.foreco.2004.06.005

Virto I, Imaz MJ, Fernández-Ugalde O, Urrutia I, Enrique A, Bescansa P, 2012. Soil quality evaluation following the implementation of permanent cover crops in semi-arid vineyards. Organic matter, physical and biological soil properties. Span J Agric Res 10(4): 1121-1132. http://dx.doi.org/10.5424/sjar/2012104-613-11

Wheeler SJ, Black AS, Pickering GJ, 2005. Vineyard floor management improves wine quality in highly vigorous Vitis vinifera 'Cabernet Sauvignon' in New Zealand. New Zeal J Crop Hortic Sci 33: 317-328. http://dx.doi.org/10.1080/01140671.2005.9514365

Williams LE, Araujo FJ, 2002. Correlations among predawn leaf, midday leaf, and midday stem water potential and their correlations with other measures of soil and plant water status in Vitis vinifera. J Amer Soc Hort Sci 127(3): 448-454.

Williams LE, Trout TJ, 2005. Relationships among vine- and soil-based measures of water status in a Thompson seedless vineyard in response to high-frequency drip irrigation. Am J Enol Vitic 56(4): 357-366.

Zamora F, 2003. Elaboración y crianza del vino tinto: aspectos científicos y prácticos. Mundi-Prensa, Madrid, 225 pp.

Published
2015-12-02
How to Cite
Trigo-Córdoba, E., Bouzas-Cid, Y., Orriols-Fernández, I., Díaz-Losada, E., & Mirás-Avalos, J. M. (2015). Influence of cover crop treatments on the performance of a vineyard in a humid region. Spanish Journal of Agricultural Research, 13(4), e0907. https://doi.org/10.5424/sjar/2015134-8265
Section
Plant production (Field and horticultural crops)