Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T. petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid (SHW-DPW) wheat accessions

  • Qian Chen (1) Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan (2)Triticeae Research Institute, Sichuan Agricultural University, Wenjiang 611130, Sichuan
  • Jun Song Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan
  • Wen-Ping Du Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan
  • Li-Yuan Xu Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan
  • Gui-Rong Yu Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu 610061, Sichuan
Keywords: tetraploid wheat, hexaploid wheat, seed set, fertility of hybrids, c-value, meiotic pairing configuration

Abstract

Intraspecific hybridization between Triticum petropavlovskyi Udacz. et Migusch., synthetic hexaploid wheat (SHW-DPW), and tetraploid and hexaploid wheat, was performed to collect data on seed set, fertility of F1 hybrid, and meiotic pairing configuration, aiming to evaluate the possible origin of T. petropavlovskyi. Our data showed that (1) seed set of crosses T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Chinese Spring was significantly high; (2) fertility of hybrids T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum ssp. yunnanense was higher than that of the other hybrids; (3) fertility of F1 hybrids SHW-DPW × T. dicoccoides and SHW-DPW×T. aestivum ssp. tibetanum was significantly high; and (4) c-value of T. petropavlovskyi × T. polonicum and T. petropavlovskyi × T. aestivum cv. Changning white wheat was also significantly high. The results indicate that the probable origin of T. petropavlovskyi is divergence from a natural cross between T. aestivum and T. polonicum, via either spontaneous introgression or breeding effort.

Downloads

Download data is not yet available.

References

Akond ASMGM, Watanabe N, 2005. Genetic variation among portuguese landraces of 'arrancada' wheat and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol 52: 619-628. https:/doi.org/10.1007/s10722-005-6843-8

Akond ASMGM, Watanabe N, Furuta Y, 2008. Comparative genetic diversity of Triticum aestivum-Triticum polonicum introgression lines with long glume and Triticum petropavlovskyi by AFLP-based assessment. Genet Resour Crop Evol 55: 133-141. https:/doi.org/10.1007/s10722-007-9221-x

Alonso LC, Kimber G, 1981. The analysis of meiosis in hybrids (II): Triploid hybrids. Can J Genet Cytol 23: 221-234. https:/doi.org/10.1139/g81-025

Chen QF, 1999. Discussion on origin of chinese endemic wheat. Guizhou Agri Sci 27: 20-25.

Chen Q, Sun YZ, Dong YS, 1985. Cytogenetical studies on interspecific hybrids of xinjiang wheat. Acta Agron Sin 11: 23-28.

Chen PD, Liu DJ, Pei GZ, Qi LL, Huang L, 1988. The chromosome constitution of three endemic hexaploid wheats in western China. Proc 7th Int Wheat Genetics Symp; Miller TE & Koebner RMD (eds), pp: 75-80. Cambridge, UK.

Chen Q, Kang HY, Fan X, Wang Y, Sha LN, Zhang HQ, Zhong MY, Xu LL, Zeng J, Yang RW, et al., 2013. Evolutionary history of Triticum petropavlovskyi Udacz. et Migusch. inferred from the sequnces of the 3-phosphoglycerate kinase gene. Plos One 8: e71139. https:/doi.org/10.1371/journal.pone.0071139

Dong YS, Zheng DS, Qiao DY, Zeng XQ, En ZC, Chen XR, 1981. Investigation and study on yunnan wheat (Triticum aestivum ssp. yunanense King). Acta Agron Sin 7: 145-151.

Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM, 1979. Flora of cultivated plants. In: Wheat, vol 1; Dorofeev VF & Migushova EF (eds), pp: 1-384. Kolos, Leningrad

Efremova TT, Maystrenko OI, Laikova LI, Arbuzova VS, Popova OM, 2000. Comparative genetic analysis of hexaploid wheats Triticum petropavlovskyi Udasz. et Migusch. and Triticum aestivum L. Russ J Genet 36: 1142-1148.

Goncharov NP, 2005. Comparative genetic analysis-a base for wheat taxonomy revision. Czech J Genet Plant Breed 41: 52-55.

Jakubtsiner MM, 1959. A contribution to the knowledge of the wheats of China. Bot J 44: 1425-1436.

Kang HY, Wang Y, Yuan HJ, Jiang Y, Zhou YH, 2008. A new synthesized 6x-wheats, derived from dwarfing Polish wheat (Triticum polonicum L.) and Aegilops tauschii cosson. Int J Agr Res 3: 252-260. https:/doi.org/10.3923/ijar.2008.252.260

Kang HY, Wang Y, Yuan HJ, Jiang Y, Zhou YH, 2009. Production of intergeneric hybrid between dwarfing Polish wheat (Triticum polonicum L.) and Aegilops tauschii Cosson with reference to wheat origin. Russ J Genet 45: 766-772. https:/doi.org/10.1134/S1022795409060064

Kang HY, Fan X, Zhang HQ, Sha LN, Sun G, Zhou YH, 2010. The origin of Triticum petropavlovskyi Udacz. et Migusch.: Demonstration of the utility of the genes encoding plastid acetyl-coa carboxylase sequence. Mol Breed 25: 381-395. https:/doi.org/10.1007/s11032-009-9337-0

Kihara H, Nishiyama I, 1930. Genome analyses bei Triticum und Aegilops (I): Genomaffinitaten in tri-, tetra- und pentaploiden weizenbastarden. Cytologia 1: 270-284.

Pitkanen S, 2000. Classification of vegetational diversity in managed boreal forests in eastern Finland. Plant Ecol 146: 11-28. https:/doi.org/10.1023/A:1009877403926

Riley R, Coucoli H, Chapman V, 1967. Chromosomal interchanges and the phylogeny of wheat. Heredity 22: 233-247. https:/doi.org/10.1038/hdy.1967.29

Seraj ZI, Islam Z, Faruque MO, Devi T, Ahmed S, 1997. Identification of the regeneration potential of embryo derived calluses from various Indica rice varieties. Plant Cell Tiss Org 48: 9-13. https:/doi.org/10.1023/A:1005766513009

Shao QQ, Li CS, Basang CR, 1980. Semi-wild wheat from Xizang (Tibet). Acta Genet Sin 7: 150-156.

Udaczin RA, Miguschova EF, 1970. Novoe v poznanii roda triticum L. Venstnik S-Kh Nauki 9: 20-24.

Ward RW, Yang ZL, Kim HS, Yen C, 1998. Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T. tauschii from China and south Asia. Theor Appl Genet 96: 312-318. https:/doi.org/10.1007/s001220050742

Watanabe N, Imamura I, 2002. The inheritance and chromosomal location of a gene for long glume phenotype in Triticum petropavlovskyi Udacz. et Migusch. J Genet Breed 57: 221-227.

Wei YM, Zheng YL, Liu DC, Zhou YH, Lan XJ, 2002. Hmw-glutenin and gliadin variations in Tibetan weedrace, Xinjiang rice wheat and Yunnan hulled wheat. Genet Resour Crop Evol 49: 327-330. https:/doi.org/10.1023/A:1015544403431

Yao JX, Yang FB, Shi SY, Zhao YM, 1983. Research on a new species in Triticum-xinjiang wheat with rice-like spike. Hereditas (Beijing) 5: 17-20.

Yang WY, Yen C, Yang JL, 1992. Cytogenetic study on the origin of some special Chinese landraces of common wheat. Wheat Inf Serv 75: 14-20.

Yen C, Luo MC, Yang JL, 1983. The distribution of Ageilops tauschiii Cosson in China with reference of the origin of the Chinese common wheat. Proc 6th Int Wheat Genetics Symp; Sakamoto S (ed), pp: 55-58. Kyoto.

Yen C, Yang JL, Luo MC, 1988. The origin of the Tibetan weedrace of hexaploid wheat, Chinese spring, Chengdu Guangtou and other landraces of white wheat complex from China. Proc 7th Int Wheat Genetics Symp; Miller TE & Koebner RMD (eds), pp: 175-179. Cambridge, UK.

Published
2017-01-20
How to Cite
Chen, Q., Song, J., Du, W.-P., Xu, L.-Y., & Yu, G.-R. (2017). Possible origin of Triticum petropavlovskyi based on cytological analyses of crosses between T. petropavlovskyi and tetraploid, hexaploid, and synthetic hexaploid (SHW-DPW) wheat accessions. Spanish Journal of Agricultural Research, 14(4), e0713. https://doi.org/10.5424/sjar/2016144-8476
Section
Plant breeding, genetics and genetic resources