Effects of synthetic Zn chelates on flax response and soil Zn status

Demetrio Gonzalez, Patricia Almendros, Jose M. Alvarez


Throughout the world, flax (Linum usitatissimum L.) is often grown in Zn-deficient soils, but appropriate fertilizer management can optimize both crop yield and micronutrient content. A greenhouse experiment was conducted on Typic Haploxeralf (pH 6.1) and Typic Calcixerept (pH 8.1) soils to study the relative efficiency of chelated Zn using two application rates of three different Zn sources [Zn-EDDHSA, ethylenediamine-di-(2-hydroxy-5-sulfophenylacetate of Zn); Zn-HEDTA, N-2-hydroxyethyl-ethylenediaminetriacetate of Zn; and Zn-EDTA, ethylenediaminetetraacetate of Zn]. Dry matter /DM) yield, Zn concentration, chlorophyll content, crude fiber and tensile properties were monitored and the soil-Zn status (available-Zn, Zn-fractions and total-Zn) was assessed. Zinc chelate applications increased the most labile forms of Zn in soils and Zn concentrations in plants. The low rate of Zn generally had a beneficial effect on DM yield and tensile properties. The exception was Zn-EDTA in the weakly acidic soil, where the highest Zn concentrations were observed in leaves and whole shoots; this coincided with the largest concentrations of labile Zn in soil. The most efficient fertilizers were Zn-EDDHSA (in both soils) and Zn-EDTA (in the calcareous soil). The relatively large amounts of labile and available Zn present in both of the soils fertilized with Zn-EDTA points to the applying this chelate at lower rate than 5 mg Zn/kg; this should, in turn, reduce the cost of Zn fertilization and minimize environmental pollution risk.


available Zn; crude fiber; fertilizer; soil Zn speciation; tensile properties

Full Text:



Aboulroos SA, 1981. Reaction of EDTA, DTPA, and EDDHA complexes of zinc, copper, and manganese with a calcareous soil. Z Pflanz Bodenkunde 144: 164-173. http://dx.doi.org/10.1002/jpln.19811440207

Adriano DC, 2001. Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risk of metals, 2nd edn. Springer, NY. http://dx.doi.org/10.1007/978-0-387-21510-5

Allison LE, Moodie CD, 1965. Carbonate. In: Methods of soil analysis; Black CA et al. (ed.). pp: 1379-1400. Agron. Monogr. 9. ASA and SSSA, Madison, WI, USA.

Alloway BJ, 2010. Zinc in soils and crop nutrition. Int Zinc Assoc and Int Fert Ind Assoc, Brussels, http://www.zinc.org/wp-content/uploads/sites/4/2015/01/2008_IZA_IFA_ZincInSoils.pdf

Alvarez JM, 2007. Influence of soil type on the mobility and bioavailabilty of chelated zinc. J Agric Food Chem 55: 3568-3576. http://dx.doi.org/10.1021/jf063236g

Alvarez JM, 2010. Influence of soil type and natural Zn chelates on flax response, tensile properties and soil Zn availability. Plant Soil 328: 217-233. http://dx.doi.org/10.1007/s11104-009-0103-1

Alvarez JM, Gonzalez D, 2006. Zinc transformations in neutral soil and zinc efficiency in maize fertilization. J Agric Food Chem 54: 9488-9495. http://dx.doi.org/10.1021/jf061371n

Alvarez JM, Almendros P, Gonzalez D, 2009. Residual effects of natural Zn chelates on navy bean response, Zn leaching and soil Zn status. Plant Soil 317: 277-291. http://dx.doi.org/10.1007/s11104-008-9808-9

AOAC, 942.04 and 985.29, 1990. Official methods of analysis. Association of Official Analytical Chemists, Washington, DC.

Baley C, 2004. Influence of kink bands on the tensile strength of flax fibers. J Mater Sci 39: 331-334. http://dx.doi.org/10.1023/B:JMSC.0000007768.63055.ae

Bos HL, Müssig J, Van den Oever MJA, 2006. Mechanical properties of short-flax-fibre reinforced compounds. Composites: Parte A 37: 1591-1604. http://dx.doi.org/10.1016/j.compositesa.2005.10.011

Bower CA, Reitemeier RF, Fireman M, 1952. Exchangeable cation analysis of saline and alkali soils. Soil Sci 73: 251−261. http://dx.doi.org/10.1097/00010694-195204000-00001

Bremner JM, 1996. Nitrogen-Total. In: Methods of soil analysis; Sparks DL (ed.). pp: 1085−1121. Part 3. SSSA Book Ser. 5. SSSA and ASA, Madison, WI, USA.

Brennan RF, Armour JD, Reuter DJ, 1993. Diagnosis of zinc deficiency. In: Zinc in soils and plants; Robson AD (ed.). pp: 167-181. Dev Plant Soil Sci 55. Kluwer Acad Publ: Dordrecht, The Netherlands. http://dx.doi.org/10.1007/978-94-011-0878-2_12

Cakmak I, Marschner H, 1987. Mechanism of phosphorus induced zinc deficiency in cotton. III. Changes in physiological availability of zinc in plants. Physiologia Plantarum 70: 13-20. http://dx.doi.org/10.1111/j.1399-3054.1987.tb08690.x

Carrillo-Gonzalez R, Simunek J, Sauve S, Adriano D, 2006. Mechanisms and pathways of trace element mobility in soils. Adv Agron 91: 111-178. http://dx.doi.org/10.1016/S0065-2113(06)91003-7

Chandi KS, Takkar PN, 1982. Effects of agricultural cropping systems in micronutrient transformation I. Zinc. Plant Soil 69: 423-436. http://dx.doi.org/10.1007/BF02372463

Chapman HD, Pratt PF, 1961. Methods of analysis for soils, plants and waters. Univ. California. Div. Agril. Sci., Berkeley, CA, USA.

Charlet K, Baley C, Morvan C, Jernot JP, GominaM, Bréard J, 2007. Characteristics of Hermès flax fibres as a function of their location in the stem and properties of the derived unidirectional composites. Composites: Parte A 38: 1912-1921. http://dx.doi.org/10.1016/j.compositesa.2007.03.006

Day PR, 1965. Particle fractionation and particle-size analysis. In: Methods of soil analysis. Black CA et al. (eds.). pp: 545−567. Agron. Monogr. 9. Part 1. ASA and SSSA, Madison, WI, USA.

Franzen D, 2004. Fertilizing flax. NDSU Ext Serv, North Dakota Univ, Fargo, ND, USA.

Gangloff WJ, Westfall DG, Peterson GA, Mortvedt JJ, 2002. Relative availability coefficients of organic and inorganic Zn fertilizers. J Plant Nut 25: 259-273. http://dx.doi.org/10.1081/PLN-100108834

Gonzalez D, Obrador A, Alvarez JM, 2007. Behavior of zinc from six organic fertilisers applied to a navy bean crop grown in a calcareous soil. J Agric Food Chem 55: 7084-7092. http://dx.doi.org/10.1021/jf071090v

Gonzalez D, Obrador A, Lopez-Valdivia LM, Alvarez JM, 2008. Effect of zinc source applied to soils on its availability to navy bean. Soil Sci Soc Am J 72: 641-649. http://dx.doi.org/10.2136/sssaj2007.0099

Grant CA, Dribnenki JCP, Bailey LD, 2000. Cadmium and zinc concentrations and ratios in seed and tissue of solin (cv LinolaTM 947) as affected by nitrogen and phosphorus fertiliser and Provide (Penicillium bilaji). J Sci Food Agr 80: 1735-1743. http://dx.doi.org/10.2136/sssaj2007.0099

Herdrich N, 2001. Grower experiences with flax and linola in Eastern Washington, 1997-2000. Cooperative Extension, Washington State Univ Ext. http://pubs.wsu.edu.

Hergert GW, Rehm GW, Wiese RA, 1984. Field evaluation of zinc sources band applied with ammonium polyphosphate suspensions. Soil Sci Soc Am J 48: 1190-1193. http://dx.doi.org/10.2136/sssaj1984.03615995004800050048x

Hesse PR, 1971. A textbook of soil chemical analysis. John Murray, London.

ISO, 11271, 2002. Soil quality-determination of redox potential field method. International Organization for Standardization, Geneva.

Jeffery JJ, Uren NC, 1983. Copper and zinc species in the soil solution and the effects of soil pH. Aust J Soil Res 21: 479-488. http://dx.doi.org/10.1071/SR9830479

Jiao Y, Grant CA, Bailey LD, 2004. Effects of phosphorus and zinc fertiliser on cadmium uptake and distribution in flax and durum wheat. J Sci Food Agr 84: 777-785. http://dx.doi.org/10.1002/jsfa.1648

Jiao Y, Grant CA, Bailey LD, 2007. Growth and nutrient response of flax and durum wheat to phosphorus and zinc fertilisers. Can J Plant Sci 87: 461-470. http://dx.doi.org/10.4141/P05-212

Joffe R, Andersons J, Wallström L, 2003. Strength and adhesion characteristics of elementary flax fibres with different surface treatments. Composites: Parte A 34: 603-612. http://dx.doi.org/10.1016/S1359-835X(03)00099-X

Kabata-Pendias A, 2004. Soil-plant transfer of trace elements - an environmental issue. Geoderma 122: 143-149. http://dx.doi.org/10.1016/j.geoderma.2004.01.004

Kabata-Pendias A, Mukherjee AB, 2007. Trace elements from soil to human. Springer, Berlin. http://dx.doi.org/10.1007/978-3-540-32714-1

Klute A, 1996. Water retention: Laboratory methods. In: Methods of soil analysis. Part 1. Physical and mineralogical methods; Klute A (ed.). pp: 635-662. SSSA Book Ser. 5. SSSA and ASA, Madison, WI, USA.

Landon RJ, 1991. Booker tropical soil manual: a handbook for soil survey and agricultural land evaluation in the tropics and subtropics. Booker Tate Ltd. Longman, London.

Lee CR, Craddock GR, Hammar HE, 1969. Factors affecting plant growth in high-zinc medium: I. Influence of iron on growth of flax at various zinc levels. Agron J 61: 562-565. http://dx.doi.org/10.2134/agronj1969.00021962006100040023x

Lindsay WL, 1979. Chemical equilibria in soils. Wiley, NY.

Loneragan JF, 1951. The effect of applied phosphate on the uptake of zinc by flax. Aust J Soil Res 4: 108-114. http://dx.doi.org/10.1071/bi9510108

Lucena JJ, Garcia-Marco S, Yunta F, Hernández-Apaolaza L, 2005. Theoretical modeling and reactivity of the iron chelates in agronomic conditions. In: Biogeochemistry of chelating agents; Nowack B, VanBriesen JM (eds.). pp: 348-363. ACS Symp Ser 910. Am Chem Soc, Washington DC. http://dx.doi.org/10.1021/bk-2005-0910.ch021

Macnicol RD, Beckett PHT, 1985. Critical tissue concentrations of potentially toxic elements. Plant Soil 85: 107-129. http://dx.doi.org/10.1007/BF02197805

Marschner H, 1995. Mineral nutrition of higher plants. Acad Press, London.

McBride MB, 1989. Reactions controlling heavy metal solubility in soils. Adv Soil Sci 5: 1−56. http://dx.doi.org/10.1007/978-1-4613-8847-0_1

McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, 2002. Animal nutrition, 6th edn. Pearson, Printice Hall, Harlow, England.

McKeague JA, Day JH, 1966. Dithionite and oxalate-extractable Fe and Al al aids in differentiating various classes of soils. Can J Soil Sci 46: 13−22. http://dx.doi.org/10.4141/cjss66-003

Mohanty AK, Misra M, Drzal LT, 2005. Natural fibers, biopolymers, and biocomposites. CRC Press-Taylor and Francis, Boca Raton, FL, USA. http://dx.doi.org/10.1201/9780203508206

Moraghan JT, 1978. Chlorotic dieback in flax. Agron J 70: 501-505. http://dx.doi.org/10.2134/agronj1978.00021962007000030034x

Moraghan JT, 1980. Effect of soil temperature on response of flax to phosphorus and fertilisers. Soil Sci 129: 290-296. http://dx.doi.org/10.1097/00010694-198005000-00005

Moraghan JT, 1993. Accumulation of cadmium and selected elements in flax seed grown on a calcareous soil. Plant Soil 150: 61−68. http://dx.doi.org/10.1007/BF00779176

Nijensohn L, Pizarro OC, 1960. Un procedimiento para la determinación del calcáreo activo en suelos orgánicos. Boletín Técnico, 2, Inst. Prov. Agropecuario. Madrid.

Nofal OA, Zedian MS, Bakry BA, 2011. Flax yield and quality traits as affected by zinc foliar application under newly reclaimed sandy soils. J Appl Sci Res 7: 1361-1367.

Olsen SR, Cole CV, Watanabe FS, Dean LA, 1954. Estimation of available phosphorous in soils by extraction with sodium bicarbonate. USDA Circ. 939. U.S. Gov. Print Office, Washington, DC.

Paschke MW, Perry LG, Redente EF, 2006. Zinc toxicity thresholds for reclamation forb species. Water Air Soil Poll 170: 317−330. http://dx.doi.org/10.1007/s11270-006-3139-3

Patrick WH, Gambrell RP, Faulkner SP, 1996. Redox measurements of soil. In: Methods of soil analysis, part 3: Chemical methods; Sparks DL (ed.). SSSA Book Ser. 5. SSSA, Madison, WI, USA.

Prasad B, Sinha MK, 1981. The relative efficiency of zinc carriers on growth and zinc nutrition of corn. Plant Soil 62: 45-53. http://dx.doi.org/10.1007/BF02205024

Reed ST, Martens DC, 1996. Copper and zinc. In: Methods of soil analysis, part 3: Chemical methods; Spark DL (ed). SSSA and ASA, Madison, WI, USA.

Sajwan KS, Lindsay WL, 1988. Effect of redox, zinc fertilization and incubation time on DTPA-extractable zinc, iron and manganese. Commun Soil Sci Plant Anal 19: 1-11. http://dx.doi.org/10.1080/00103628809367915

Sattelmacher B, Horst WJ, Becker HC, 1994. Factors that contribute to genetic variation for nutrient efficiency of crop plants. Z Pflanz Bodenkunde 157: 215-224. http://dx.doi.org/10.1002/jpln.19941570309

Schultz DK, 1964. Quantitative interpretation of mineralogical composition from X-ray and chemical data for the Pierre Shale. US Geol Surv Prof Paper 391-C, Reston, VA, USA.

Schultz E, Joutti A, Räisänen M, Lintinen P, Martikainen E, Lehto O, 2004. Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland. Sci Total Environ 326: 71-84. http://dx.doi.org/10.1016/j.scitotenv.2003.12.008

Shaheen SM, Tsadilas CD, Rinklebe J, 2013. A review of the distribution coefficients of trace elements in soils: Influence of sorption system, element characteristics, and soil colloidal properties. Adv Colloid Interfac Sci 201-202: 43-56. http://dx.doi.org/10.1016/j.cis.2013.10.005

Shuman LM, 1998. Micronutrient fertilisers. J Crop Prod 1: 165-195. http://dx.doi.org/10.1300/J144v01n02_08

Soil Survey Staff, 2010. Keys to Soil Taxonomy, 11th edn. USDA U.S. Govt. Printing Office: Washington, DC, USA.

Soltanpour PN, 1991. Determination of nutrient availability and elemental toxicity by AB-DTPA soil test and ICPS. Adv Soil Sci 16: 165-190. http://dx.doi.org/10.1007/978-1-4612-3144-8_3

Spratt ED, Smid AE, 1978. Yield and elemental composition of flax affected by P and micronutrients. Agron J 70: 633-638. http://dx.doi.org/10.2134/agronj1978.00021962007000040026x

Storey JB, 2007. Zinc. In: Handbook of plant nutrition; Barker AV, Pilbeam DJ (eds.). pp: 411-435. CRC Press, Taylor and Francis, Boca Raton, FL, USA.

Vitosh ML, Warncke DD, Lucas RE, 1994. Secondary and micronutrients for vegetables and field crops. E-486, Michigan State University Extension.

DOI: 10.5424/sjar/2016143-8765