Chitosans of different molecular weight enhance potato (Solanum tuberosum L.) yield in a field trial

Alejandro B. Falcón-Rodríguez, Daimy Costales, Dianevys Gónzalez-Peña, Donaldo Morales, Yuliem Mederos, Eduardo Jerez, Juan C. Cabrera


Physico-chemical features of chitosan affect its biological activity on plants. In this work, the influence of chitosan molecular mass in potato (Solanum tuberosum L.) yields was investigated. By using chitosan polymers of high (CH-1) and low (CH-2) molecular weight and a hydrolysed chitosan derivative (CHH), two experiments were performed under field conditions to determine the effect of these polymers on yields of two potato varieties, ‘Call White’ and ‘Santana’. For this purpose, the foliar spray of low doses of the derivatives at three cultivation moments was performed and several yield variables were determined at crop harvest. All three chitosan compounds increased the performance variables determined respect to the control, depending on the variable, the dose employed and the mass of the derivative evaluated. In most variables determined, the two lowest doses (200 and 325 mg/ha) provoked the highest increments above control. Chitosans also affected distribution of mass per tuber size, particularly; in ‘Santana’ variety the two lowest doses enhanced the commercial tuber sizes. Among the polymers, CH-1 caused the greatest increases in performance, while, compared to the polymer, CHH provoked higher yields. In conclusion, foliar application at low doses of high molecular weight and hydrolysed chitosan enhanced potato yield between 15-30%.


polymer; oligo-chitosan; plant production; tubers

Full Text:



Badawy MEI, Rabea EI, 2011. A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection: A review. Int J Carbohydr Chem 2011: Article ID 460381.

Cabrera JC, Messiaen J, Cambier P, Van Cutsem P, 2006. Size, acetylation and concentration of chitooligosaccharide elicitors determine the switch from defense involving PAL activation to cell death and water peroxide production in Arabidopsis cell suspensions. Physiol Plantarum 127: 44-46.

Cabrera JC, Nápoles MC, Falcón AB, Costales D, Diosdado E, González S, González L, González G, Rogers HJ, Cabrera G, et al., 2013. Practical use of oligosaccharins in agriculture. Acta Hortic 1009: 195-212.

Chibu H, Shibayama H, Arima S, 2002. Effects of chitosan application on the shoot growth of rice and soybean. Japan J Crop Sci 71: 206-211.

Cho MH, No HK, Prinyawiwatkul W, 2008. Chitosan treatments affect growth and selected quality of sunflower sprouts. J Food Sci 73: 70-77.

Deepmala K, Hemantaranjan A, Bharti S, Nishant Bhanu A, 2014. A future perspective in crop protection: chitosan and its oligosaccharides. Adv Plants Agric Res 1 (1): 00006.

Deroncelé R, Salomón J, Manso F, Linares J, Santo R, Roque R, González P, Navarro H, Tabera O, 2000. Guía técnica para la producción de papa en Cuba. Instituto de Investigaciones Hortícolas, La Habana, Cuba, 42 pp.

Dzung N, 2011. Enhancing crop production with chitosan and its derivatives. In: Chitin, chitosan, oligosaccharides and their derivatives, pp: 619-631. CRC Press.

Falcón-Rodríguez AB, Costales D, Cabrera JC, Martínez-Téllez MA, 2011. Chitosan physic-chemical properties modulate defense responses and resistance in tobacco plants against the oomycete Phytophthora nicotianae. Pestic Biochem Physiol 100: 221-228.

Falcón-Rodríguez AB, Guillaume W, Cabrera JC, 2012. Exploiting plant innate immunity to protect crops against biotic stress: Chitosaccharides as natural and suitable candidates for this purpose. In: New perspectives in plant protection; Bandani AR (Ed), pp: 139-166, InTech.

Hernández A, Morales M, Borges Y, Vargas D, Cabrera JA, Ascanio MO, Ríos H, Funes F, Bernal A, González PJ, 2014. Degradación de las propiedades de los suelos ferralíticos rojos lixiviados de la "Llanura Roja de La Habana" por el cultivo continuado. Algunos resultados sobre su mejoramiento. Ediciones INCA, 156 pp.

Hernández-Lauzardo AN, Bautista-Baños S, Velásquez-del Valle MG, Méndez-Montealvo, MG, Sánchez-Rivera MM, Bello-Pérez LA, 2008. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Carb Polymers 73: 541-547.

Iriti M, Picchi V, Rossoni M, Gomarasca S, Ludwig N, Gargano M, Faoro F, 2009. Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Env Exp Bot 66: 493-500.

Morales D, Torres Ll, Jerez E, Falcón-Rodríguez AB, Dell Amico J, 2015. QuitoMax effect on growth and yield in potato crop (Solanum tuberosum L.). Cult Trop 36: 133-143.

Ohta K, Morishita S, Suda K, Kobayashi N, Hosoki T, 2004. Effects of chitosan soil mixture treatment in the seedlingstage on the growth and flowering of several ornamental plants. J Japan Soc Hort Sci 73: 66-68.

Palma-Guerrero J, Jansson HB, Salinas J, López-Llorca LV, 2008. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J Appl Microbiol 104 (2): 541-553.

Parada LG, Crespín GD, Miranda R, Katime I, 2004. Chitosan characterization by capilar viscosimetry and potentiometry. Rev Iberoameric Polim 5: 1-16.

Ramos-García M, Ortega-Centeno S, Hernández-Lauzardo AN, Alia-Tejacal I, Bosquez Molina E, Bautista Baños S, 2009. Response of gladiolus (Gladiolusspp) plants after exposure corms to chitosan and hotwater treatments. Sci Hortic 121: 480-484.

Roberts GAF, 1992. Chitin chemistry. Macmillan Press, London, 352 pp.

Trotel-Aziz P, Couderchet M, Vernet G, Aziz A, 2006. Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur J Plant Pathol 114: 405-413.

Xu X, Zhao X, Han Y, Du, 2007. Antifungal activity of oligochitosan against Phytophthora capsici and other plant pathogenic fungi in vitro. Pest Biochem Physiol 87: 220-228.

DOI: 10.5424/sjar/2017151-9288