Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress

  • Marcos E. B. Brito Federal University of Sergipe, Rodovia Engenheiro Jorge Neto, km 3, Silos, 49680-000, Nossa Senhora da Gloria, SE
  • Lauriane A. A. Soares Federal University of Campina Grande, Rua Aprígio Veloso, 882, Bairro Universitário, 58429-140, Campina Grande
  • Walter S. Soares Filho Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Cassava & Fruits, Cruz das Almas, Bahia
  • Pedro D. Fernandes Federal University of Campina Grande, Rua Aprígio Veloso, 882, Bairro Universitário, 58429-140, Campina Grande
  • Elaine C. B. Silva Federal University of Campina Grande, Rua Aprígio Veloso, 882, Bairro Universitário, 58429-140, Campina Grande
  • Francisco V. S. Sá Federal University of Campina Grande, Rua Aprígio Veloso, 882, Bairro Universitário, 58429-140, Campina Grande
  • Luderlândio A. Silva Federal University of Campina Grande, Rua Aprígio Veloso, 882, Bairro Universitário, 58429-140, Campina Grande
Keywords: Citrus spp., rootstock, salinity, photosynthesis, growth

Abstract

The scarcity of good quality water is a limiting factor for irrigated agriculture, especially in arid and semiarid regions, where water sources generally contain high concentrations of ions. In such conditions, it is essential to cultivate genotypes with economic potential and tolerance to salinity. Considering the importance of citrus and the need to identify genetic materials that adapt to saline stress, this study evaluates the salinity tolerance of 10 genotypes with rootstock potential. For the irrigation water, five levels of electrical conductivity (ECw: 0.8, 1.6, 2.4, 3.2 and 4.0 dS/m at 25 °C) were used in a randomized block design with three replications, and seed germination and growth variables, as well as physiological plant parameters, were evaluated. The germination rate of the hybrid TSKC × CTARG – 019 was the best under salt conditions, as it was the genotype with the highest tolerance to salinity in the germination stage. Salinity reduced the growth of the citrus genotypes, with the possibility of using water with EC of up to 1.6 dS/m in the rootstock formation stage. Salt stress affected the photosynthetic rate of the genotypes ‘San Diego’ citrandarin and TSKC × CTSW – 018 by reducing the stomatal conductance, restricting the diffusion of CO2 into the substomatal camera. The genotypes TSKC × CTARG – 019, TSKC × CTTR – 012 and TSKC × TRBK – 007 have the greatest potential for growth and photosynthetic apparatus efficiency when subjected to salinity.

Downloads

Download data is not yet available.

References

Alaoui MM, El Jourmi L, Ouarzane A, Lazar S, El Antri S, Zahouily M, Hmyene A, 2013. Effect of salt stress on germination and growth of six Moroccan wheat varieties. J Mater Environ Sci 4 (6): 997-1004.

Bosco MRO, Oliveira AAB, Hernandez FFF, Lacerda CF, 2009. Efeito do NaCl sobre o crescimento, fotossíntese e relações hídricas de plantas de berinjela. Rev Ceres 56 (3): 296-302.

Brito MEB, 2010. Tolerância de genótipos de citros ao estresse salino. Master's thesis. Univ. Fed. de Campina Grande, Campina Grande, Brazil. 180 pp.

Brito MEB, Fernandes PD, Gheyi HR, Melo AS, Cardoso JAF, Soares Filho WS, 2008. Sensibilidade de variedades e híbridos de citrange à salinidade na formação de porta-enxertos. Rev Bras Ciênc Agr 3 (4): 343-353. https://doi.org/10.5039/agraria.v3i4a364

Brito MEB, Soares LAA, Fernandes PD, Lima GS, Sá FVS, Melo AS, 2012. Comportamento fisiológico de combinações copa/porta-enxerto de citros sob estresse hídrico. Rev Bras Ciênc Agr 7 (supl): 857-865. https://doi.org/10.5039/agraria.v7isa1941

Brito MEB, Brito KSA de, Fernandes PD, Gheyi HR, Suassuna JF, Soares Filho WS, Melo AS de, Xavier DA, 2014. Growth of ungrafted and grafted citrus rootstocks under saline water irrigation. Afr J Agr Res 9 (50): 3600-3609.

Chaves MM, Flexas J, Pinheiro C, 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103 (4): 551-560. https://doi.org/10.1093/aob/mcn125

Cruz JL, Pelacani CR, Soares Filho WS, Castro Neto MT, Coelho EF, Dias AT, Paes RA, 2003. Produção e partição de matéria seca e abertura estomática do limoeiro 'Cravo' submetido a estresse salino. Rev Bras Frutic 25 (3): 528-531. https://doi.org/10.1590/S0100-29452003000300042

Dias MA, Zucoloto M, Dias DCFS, Silva DFP, Sediyama CAZ, Souza Neto JD, 2012. Resposta fisiológica de sementes de variedades porta-enxertos de citros submetidas à condicionamento osmótico. Com Sci 3 (4): 238-243.

EMBRAPA, 2009. Manual de análises químicas de solos, plantas e fertilizantes, 2.ed. Empresa Brasileira de Pesquisa Agropecuária Informação Tecnológica, Brasília. 628 pp. ISBN: 9788573834307.

FAO, 2013. Statistical Yearbook 2013. Rome, Italy. http://www.fao.org/docrep/018/i3107e/i3107e00.htm [25 Oct 2015].

Ferguson L, Grattan SR, 2005. How salinity damages citrus: Osmotic effects and specific ion toxicities. HortTechnology 15 (1): 95-99.

Fernandes PD, Brito MEB, Gheyi HR, Soares Filho WS, Melo AS, Carneiro PT, 2011. Crescimento de híbridos e variedades porta-enxerto de citros sob salinidade. Acta Sci Agron 33 (2): 259-267.

Ferreira DF, 2011. SISVAR: A computer statistical analysis system. Ciênc Agrotec 35 (6): 1039-1042. https://doi.org/10.1590/S1413-70542011000600001

Flowers TJ, Flowers SA, 2005. Why does salinity pose such a difficult problem for plant breeders? Agric Water Manage 78 (1-2): 15-24. https://doi.org/10.1016/j.agwat.2005.04.015

Forner-Giner MA, Legaz F, Primo-Millo E, Forner J, 2011. Nutritional responses of citrus rootstocks to salinity: performance of the new hybrids. J Plant Nutr 34 (10): 1437-1452. https://doi.org/10.1080/01904167.2011.585202

Garcia-Sanchez F, Syvertsen JP, Gimeno V, Botia P, Perez-Perez JG, 2007. Responses to flooding and drought stress by two citrus rootstock seedlings with different water use efficiency. Physiol Plant 130 (4): 532-542. https://doi.org/10.1111/j.1399-3054.2007.00925.x

Gonzalez P, Syvertsen JP, Etxeberria E, 2012. Sodium distribution in salt-stressed citrus rootstock seedlings. HortScience 47 (10): 1504-1511.

Grieve AM, Walker RR, 1983. Uptake and distribution of chloride, sodium and potassium ions in salt-treated citrus plants. Aust J Agric Res 34 (2): 133-143. https://doi.org/10.1071/AR9830133

Grosser JW, Omar AA, Gmitter JA, Syvertsen JP, 2012. Salinity tolerance of 'Valencia' orange trees on allotetraploid rootstocks. Proc Fla State Hort Soc 125 (125): 50-55.

Hunt DF, Shipley B, Askew AP, 2002. A modern tool for classical plant growth analysis. Ann Bot 90 (4): 485-488. https://doi.org/10.1093/aob/mcf214

Hussain S, Luroa F, Costantinoa G, Ollitrault P, Morillon R, 2012. Physiological analysis of salt stress behaviour of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. S Afr J Bot 81: 103-112. https://doi.org/10.1016/j.sajb.2012.06.004

IBGE, 2014. Levantamento sistemático da produção agrícola: junho de 2014. Instituto Brasileiro de Geografia e Estatística. http://www.ibge.gov.br [15 october 2015].

Levy Y, Syvertsen JP, 2004. Irrigation water quality and salinity effects in citrus trees. Hortic Rev 30: 37-82.

Magalhães Filho JR, Amaral LR, Machado DFSP, Medina CL, Machado EC, 2008. Deficiência hídrica, trocas gasosas e crescimento de raízes em laranjeira 'Valência' sobre dois tipos de porta-enxerto. Bragantia 67 (1): 75-82. https://doi.org/10.1590/S0006-87052008000100009

Mattos Junior D, Negri JD, Pio RS, Pompeu Junior J, 2005. Citros: principais informações e recomendações de cultivo. Boletim técnico 200 (IAC), Instituto Agronômico de Campinas. http://www.centrodecitricultura.br [30 september 2015].

Medeiros JF, Silva MCC, Sarmento DHA, Barros AD, 2007. Crescimento do meloeiro cultivado sob diferentes níveis de salinidade, com e sem cobertura do solo. Rev Bras Eng Agric Ambient 11 (3): 248-255. https://doi.org/10.1590/S1415-43662007000300002

Nascimento AKS, Fernandes PD, Suassuna JF, Oliveira ACM, Sousa MSS, Azevedo JGN, 2012. Tolerância de genótipos de citros ao estresse hídrico na fase de porta-enxerto. Rev Bras Agric Irrig 6 (1): 14-22. https://doi.org/10.7127/rbai.v6n100075

Quaggio JA, Mattos Junior D, Catarella H, 2005. Manejo da fertilidade do solo na citricultura. In: Citros; Mattos Junior D et al. (org.). Instituto Agronômico Fapesp, Campinas. Vol 1, pp: 484-507.

Rosales MA, Ocampo E, Rodriguez-Valentin R, OlveraCarrillo Y, Acosta-Gallegos J, Covarrubias AA, 2012. Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 56: 24-34. https://doi.org/10.1016/j.plaphy.2012.04.007

Schmitz JA, 1998. Cultivo de Poncirus trifoliata (L.) Raf. em recipientes: influência de substratos e de fungos micorrízicos arbusculares. Master's thesis. Univ. Fed. do Rio Grande do Sul, Porto Alegre, Brazil. 144 pp.

Silva LA, Brito MEB, Sá FVS, Moreira RCL, Soares Filho WS, Fernandes PD, 2014. Mecanismos fisiológicos em híbridos de citros sob estresse salino em cultivo hidropônico. Rev Bras Eng Agric Ambient 18 (supl): 1-7. https://doi.org/10.1590/1807-1929/agriambi.v18nsupps1-s7

Siqueira DL, Vasconcellos JFF, Dias DCFS, Pereira WE, 2002. Germinação de sementes de porta-enxertos de Citros após o armazenamento em ambiente refrigerado. Rev Bra Frut 24: 317-322. https://doi.org/10.1590/S0100-29452002000200009

Stuchi ES, Girardi EA, 2011. Adensamento de plantio deve ser o quarto elemento no manejo do HLB. Citricultura Atual 14 (81): 12-16.

Sykes SR, 2011. Chloride and sodium excluding capacities of citrus rootstock germplasm introduced to Australia from the People's Republic of China. Sci Hort 128 (4): 443-449. https://doi.org/10.1016/j.scienta.2011.02.012

Syvertsen AJP, Garcia-Sanchez F, 2014. Multiple abiotic stresses occurring with salinity stress in citrus. Environ Exp Bot 103: 128-137. https://doi.org/10.1016/j.envexpbot.2013.09.015

Taiz L, Zeiger E, 2013. Fisiologia vegetal. Artmed, Porto Alegre, BR. 918 pp. ISBN: 9788536327952.

Tozlu I, Moore GA, Guy CL, 2000. Effects of increasing NaCl concentration on stem elongation, dry mass production and macro-and micro-nutrient accumulation in Poncirus trifoliata. Aust J Plant Physiol 27 (1): 35-42.

Published
2018-04-26
How to Cite
Brito, M. E. B., Soares, L. A. A., Soares Filho, W. S., Fernandes, P. D., Silva, E. C. B., Sá, F. V. S., & Silva, L. A. (2018). Emergence and morphophysiology of Sunki mandarin and other citrus genotypes seedlings under saline stress. Spanish Journal of Agricultural Research, 16(1), e0801. https://doi.org/10.5424/sjar/2018161-9400
Section
Plant physiology