What role will climate change play in EU agricultural markets? An integrated assessment taking into account carbon fertilization effects

Pilar Martinez, María Blanco, Benjamin Van Doorslaer, Fabien Ramos, Andrej Ceglar

Abstract


Recent studies point to climate change being one of the long-term drivers of agricultural market uncertainty. To advance in the understanding of the influence of climate change on future agricultural market developments, we compared a baseline scenario for the year 2030 with alternative simulation scenarios that differ regarding: (1) emission scenarios; (2) climate projections; and (3) the consideration of carbon fertilization effects on crop growth. For each simulation scenario, the CAPRI model provides global and EU-wide impacts of climate change on agricultural markets. Results showed that climate change would considerably affect agrifood markets up to 2030. Nevertheless, market-driven adaptation strategies (production intensification, trade adjustments) would soften the impact of yield shocks on supply and demand. As a result, regional changes in production would be lower than foreseen by other studies focused on supply effects.


Keywords


bio-economic modelling; agricultural market uncertainty; food security

Full Text:

PDF

References


Adams RM, Hurd BH, Lenhart S, Leary N, 1998. Effects of global climate change on agriculture: an interpretative review. Clim Res 11: 19-30. https://doi.org/10.3354/cr011019

Ainsworth EA, Long SP, 2005. What have we learned from 15 years of free-air CO2 enrichments (FACE)? A meta-analysis of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165: 351-372. https://doi.org/10.1111/j.1469-8137.2004.01224.x

Araujo-Enciso SR, Blanco M, Artavia M, Ramos F, M'Barek R, Van Doorslaer B, Stanca L, Donmez A, 2016. Medium-term drivers of food markets variability and uncertainty. In: Agricultural markets instability: Revisiting the recent food crises; Garrido et al. (eds.), pp. 59-73. Routledge, UK.

Baldos ULC, Hertel TW, 2015. The role of international trade in managing food security risks from climate change. Food Secur 7: 275-290. https://doi.org/10.1007/s12571-015-0435-z

Blanco M, Ramos F, Van Doorslaer B, 2014. Climate change as a key long-term driver for global agricultural market developments. 14th Congr Eur Assoc Agric Econ, Workshop New developments in understanding price dynamics, Ljubljana (Slovenia), August 26-29.

Bondeau A, Smith P, Zaehle S, Schaphoff S, Lucht W, Cramer W, Gerten D, Lotze-Campen H, Müller C, Reichstein M, Smith B, 2007. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Global Change Biol 13: 679-706. https://doi.org/10.1111/j.1365-2486.2006.01305.x

Boogaard HL, De Wit AJW, te Roller JA, Van Diepen CA, 2014. User's guide for the WOFOST control centre 2.1 and the crop growth simulation model WOFOST 7.1.7. Wageningen University & Research Centre. http://www.wageningenur.nl/en/Expertise-Services/Research-Institutes/alterra/Facilities-Products/Software-and-models/WOFOST/Documentation-WOFOST.htm [31 August 2015].

Britz W, Witzke H, 2014. CAPRI Model Documentation 2014. University of Bonn. http://www.capri-model.org/docs/capri_documentation.pdf [31 August 2015].

Calzadilla A, Rehdanz K, Betts R, Falloon P, Wiltshire A, Tol RTJ, 2013. Climate change impacts on global agriculture. Climatic Change 120: 357-374. https://doi.org/10.1007/s10584-013-0822-4

Delincé J, Ciaian P, Witzke HP, 2015. Economic impacts of climate change on agriculture: the AgMIP approach. J Appl Remote Sens 9 (1): 097099. https://doi.org/10.1117/1.JRS.9.097099

Deryng D, Conway D, Ramankutty N, Price J, Warren R, 2014. Global crop yield response to extreme stress under multiple climate change futures. Environ Res Lett 9 (3): 034011. https://doi.org/10.1088/1748-9326/9/3/034011

Ebi KL, Hallegatte S, Kram T, Arnell NW, Carter TR, Edmonds J, Kriegler E, Mathur R, O'Neill BC, Riahi K, et al., 2014. A new scenario framework for climate change research: background, process, and future directions. Climatic Change 122: 363-372. https://doi.org/10.1007/s10584-013-0912-3

Fernández FJ, Blanco M, 2015. Modelling the economic impacts of climate change on global and European agriculture: Review of economic structural approaches. Economics 9: 1-53. https://doi.org/10.5018/economics-ejournal.ja.2015-10

Frank S, Witzke H-P, Zimmermann A, Havlik P, Ciaian P, 2014. Climate change impacts on European agriculture: A multi model perspective. 14th Congr Eur Assoc Agric Econ, Ljubljana (Slovenia), August 26-29.

Gifford RM, 2004. The CO2 fertilising effect-does it occur in the real world? New Phytol 163: 221-225. https://doi.org/10.1111/j.1469-8137.2004.01133.x

Gornall J, Betts R, Burke E, Clark R, Camp J, Willett K, Wiltshire A, 2010. Implications of climate change for agricultural productivity in the early twenty-first century. Philos T R Soc B 365: 2973-2989. https://doi.org/10.1098/rstb.2010.0158

IPPC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F. et al. (eds.). Cambridge Univ. Press.

Kriegler E, O'Neill BC, Hallegatte S, Kram T, Lempert RJ, Moss RH, Wilbanks T, 2012. The need for and use of socio-economic scenarios for climate change analysis: A new approach based on shared socio-economic pathways. Global Environ Chang 22: 807-822. https://doi.org/10.1016/j.gloenvcha.2012.05.005

Müller C, Robertson RD, 2014. Projecting future crop productivity for global economic modeling. Agr Econ 45 (1): 37-50. https://doi.org/10.1111/agec.12088

Nelson GC, Rosegrant MW, Palazzo A, Gray I, Ingersoll C, Robertson R, Tokgoz S, Zhu T, Sulser TB, Ringler C, Msangi S,You L, 2010. Food security, farming, and climate change to 2050: Scenarios, results, policy options. Int Food Policy Res Inst. http://www.ifpri.org/publication/food-security-farming-and-climate-change-2050 [31 August 2015].

Nelson G, Mensbrugghe D, Ahammad H, Blanc E, Calvin K, Hasegawa T, Havlik P, Heyhoe E, Kyle, P, Lotze-Campen H, et al., 2014. Agriculture and climate change in global scenarios: why don't the models agree? Agr Econ 45: 85-101. https://doi.org/10.1111/agec.12091

O'Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, van Vuuren DP, 2014. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic Change 122: 387-400. https://doi.org/10.1007/s10584-013-0905-2

Parry ML, Rosenzweig C, Iglesias A, Livermore M, Fischer G, 2004. Effects of climate change on global food production under SRES emissions and socio-economic scenarios. Global Environ Chang 14: 53-67. https://doi.org/10.1016/j.gloenvcha.2003.10.008

Reilly J, Hohmann N, 1993. Climate change and agriculture: the role of international trade. Am Econ Rev 83: 306-312.

Rosenzweig C, Elliott J, Deryng D, Ruane AC, Müller C, Arneth A, Boote K, Folberth C, Glotter M, Khabarov N, et al., 2014. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. P Natl Acad Sci USA 111: 3268-3273. https://doi.org/10.1073/pnas.1222463110

Tobey J, Reilly J, Kane S, 1992. Economic implications of global climate change for world agriculture. J Agr Resour Econ 17: 195-204.

Tubiello FN, Fischer G, 2006. Reducing climate change impacts on agriculture: Global and regional effects of mitigation, 2000–2080. Technol Forecast Soc Change 74: 1030-1056. https://doi.org/10.1016/j.techfore.2006.05.027

Tubiello FN, Amthor JS, Kenneth JB, Donatelli M, Easterling W, Fischer G, Gifford RM, Howden M, Reilly J, Rosenzweig C, 2007. Crop response to elevated CO2 and world food supply. A comment on "Food for thought…" by Long et al., Science 312: 1918-1921, 2006. Eur J Agron 26: 215-223. https://doi.org/10.1016/j.eja.2006.10.002

Van Diepen CA, Wolf J, Van Keulen H, Rappoldt C, 1989. WOFOST: a simulation model of crop production. Soil Use Manage 5: 16-24. https://doi.org/10.1111/j.1475-2743.1989.tb00755.x

Van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Rose SK, 2011. The representative concentration pathways: An overview. Climatic Change 109: 5-31. https://doi.org/10.1007/s10584-011-0148-z

Van Vuuren DP, Riahi K, Moss R, Edmonds J, Thomson A, Nakicenovic N, Arnell N, 2012. A proposal for a new scenario framework to support research and assessment in different climate research communities. Global Environ Chang 22: 21-35. https://doi.org/10.1016/j.gloenvcha.2011.08.002

Van Vuuren DP, Kriegler E, O'Neill BC, Ebi KL, Riahi K, Carter TR, Winkler H, 2014. A new scenario framework for climate change research: scenario matrix architecture. Climatic Change 122: 373-386. https://doi.org/10.1007/s10584-013-0906-1

Von Lampe M, Willenbockel D, Ahammad H, Blanc E, Cai Y, Calvin K, Fujimori S, Hasegawa T, Havlik P, Heyhoe E, et al., 2014. Why do global long term scenarios for agriculture differ? An overview of the AgMIP Global Economic Model Intercomparison. Agr Econ 45: 3-20. https://doi.org/10.1111/agec.12086

Wiebe K, Lotze-Campen H, Sands R, Tabeau A, van der Mensbrugghe D, Biewald A, Bodirsky B, Islam S, Kavallari A, Mason-C'Croz D, et al., 2015. Climate change impacts on agriculture in 2050 under a range of plausible socioeconomic and emissions scenarios. Environ Res Lett 10 (8): 085010. https://doi.org/10.1088/1748-9326/10/8/085010




DOI: 10.5424/sjar/2017153-9899