Climatic zoning of chia (Salvia hispanica L.) in Chile using a species distribution model

Daniela Cortés, Herman Silva, Cecilia Baginsky, Luis Morales

Abstract


Salvia hispanica L., known as chia, is a plant species originally from tropical and subtropical Mesoamerica. It is economically important because its seeds produce omega-3, thus its demand has increased in Chile and internationally. As there is no commercial production in Chile, we investigated the places in the country where this species could be cultivated in order to satisfy at the least the national demand. The aim of the study was to quantify the main climatic requirements of chia and to produce a climatic aptitude map for chia cultivation in Chile. The methodology was based on the Maxent species distribution model. We used 78 georeferenced data points where chia is grown throughout the world, mostly from the GBIF database, along with raster climatic layers from the Worldclim project. We estimated the performance curves of annual precipitation and temperature along with their respective optimal and critical values, in analogy with the Ecocrop method. The maps used two scenarios for crops in different conditions, with and without irrigation. The results indicated that the intermediate depression and coastal edge of mainly the Arica y Parinacota, Tarapacá, Antofagasta and Atacama regions have optimum conditions for irrigated crops, but it would be impossible in rainfed conditions. We conclude that chia’s cultivation niche is reduced due to its tropical climate requirements; however, it can be cultivated under irrigation in northern Chile.


Keywords


functional food; performance curves; suitability, Maxent

Full Text:

PDF

References


Ali M, Yeap S, Ho W, Beh B, Tan SW, Tan SG, 2012. The promising future of chia, Salvia hispanica L. J Biomed Biotechnol 2012: 1-9. https://doi.org/10.1155/2012/828139

AVH, 2015. Australia. Australitas virtual herbarium. http://avh.chah.org.au/

Ayerza R, 2009. The seed's protein and oil content, fatty acid composition, and growing cycle length of a single genotype of chia (Salvia hispanica L.) as affected by environmental factors. J Oleo Sci 58 (7): 347-354. https://doi.org/10.5650/jos.58.347

Ayerza R, 2010. Effects of seed color and growing locations on fatty acid content and composition of two chia (Salvia hispanica L.) genotypes. J Am Oil Chem Soc 87 (10): 1161-1165. https://doi.org/10.1007/s11746-010-1597-7

Ayerza R, 2013. Contenido de antioxidantes, proteínas, aceite y perfiles de ácidos grasos de un genotipo individual de semillas de chía (Salvia hispanica L.) cultivadas en tres ecosistemas tropicales de América del Sur. Revista A & G 3 (92): 402-407.

Ayerza R, Coates W, 2004. Composition of chia (Salvia hispanica) grown in six tropical and subtropical ecosystems of South America. Trop Sci 44 (3): 131-135. https://doi.org/10.1002/ts.154

Ayerza R, Coates W, 2006. Chía, redescubriendo un olvidado alimento de los aztecas. Del Nuevo Extremo, Buenos Aires, Argentina. 205 pp.

Baginsky C, Arenas J, Escobar H, Garrido M, Valero N, Tello D, Pizarro L, Morales L, Cazanga R, Silva H, 2016. Growth and yield of chia (Salvia hispanica L.) in the Mediterranean and desert climates of Chile. Chil J Agric Res 76 (3): 255-264. https://doi.org/10.4067/S0718-58392016000300001

Bendaña G, 2012. Agua, agricultura y seguridad alimentaria en las zonas secas de Nicaragua. ACF, FAO y ECHO, Managua, Nicaragua. 288 pp.

Coates W, Ayerza R, 1996. Production potential of chia in northwestern Argentina. Ind Crop Prod 5 (3): 229-233. https://doi.org/10.1016/0926-6690(96)89454-4

Coates W, Ayerza R, 1998. Commercial production of chia in Northwestern Argentina. J Am Oil Chem Soc 75 (10): 1417-1420. https://doi.org/10.1007/s11746-998-0192-7

Cornejo G, Ibarra G, 2011. Diversidad y distribución del género Salvia (Lamiaceae) en Michoacán, México. Rev Mex Biodivers 82 (4): 1279-1296.

De Kartzow A, 2013. Estudio de pre factibilidad técnico-económica del cultivo de chía (Salvia hispanica L.) en Chile. (Inf. Tec.), FIA. Santiago, Chile. 102 pp.

Dogliotti S, 2011. Curso de eco-fisiología de los cultivos. Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay. 46 pp.

Duarte M, Guerrero P, Carvallo G, Bustamante R, 2014. Conservation network design for endemic cacti under taxonomic uncertainty. Biol Conserv 176: 236-242. https://doi.org/10.1016/j.biocon.2014.05.028

Ecocrop, 2007. [s.l.]: FAO, Roma. http://ecocrop.fao.org/ecocrop/srv/en/home

Elith J, Graham C, Anderson R, Dudík M, Ferrier S, Guisan A, Hijmans R, Huettmann F, Leathwick J, Lehmann A, et al., 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29 (2): 129-151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

Elith J, Phillips S, Hastie T, Dudík M, Chee Y, Yates C, 2011. A statistical explanation of Maxent for ecologists. Divers Distrib 17 (1): 43-57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

ESRI, 2012. ArcGIS Desktop: Release 10. Redlys, California. Environmental Systems Research Inst Inc, 1995-2012.

FAO, 1996. Agro-ecological zoning, guidelines. (Soils Bulletin 76). Soil and Resources, Management and Conservation Service, Land and Water Development Division, Roma, Italy. 78 pp.

Fereres E, Orgaz F, González V, 2011. Reflections on food security under water scarcity. J Exp Bot Adv Access 62 (12): 4079-4086. https://doi.org/10.1093/jxb/err165

Fernández G, Johnston M, 2006. Crecimiento y temperatura. In: Fisiología Vegetal. Ed. Univ. La Serena, La Serena, Chile. pp: 1-28.

Fourcade Y, Engler J, Rödder D, Secondi J, 2014. Mapping species distributions with MAXENT using a geographically biased sample of presence data: a performance assessment of methods for correcting sampling bias. Plos One 9 (5): e97122. https://doi.org/10.1371/journal.pone.0097122

GBIF, 2015. Global Biodiversity Information Facility, Copenhagen. http://www.gbif.org/

Guisan A, Zimmermann N, 2000. Predictive habitat distribution models in ecology. Ecol Model 135 (2-3): 147-186. https://doi.org/10.1016/S0304-3800(00)00354-9

Heuer B, Yaniv Z, Ravina I, 2002. Effect of late salinization of chia (Salvia hispanica), stock (Matthiola tricuspidata) and evening primrose (Oenothera biennis) on their oil content and quality. Indust Crop Prod 15 (2): 163-167. https://doi.org/10.1016/S0926-6690(01)00107-8

Hijmans R, Cameron S, Parra J, Jones P, Jarvis A, 2005. Very high resolution interpolated climate surfaces for global land areas. Int J Climat 25: 1965-1978. https://doi.org/10.1002/joc.1276

Hildebrand D, Jamboonsri W, Phillips T, 2013. Early flowering chia and uses thereof. Univ. of Kentucky Res. Found., Lexington, KY, USA. 12pp.

Jamboonsri W, Phillips T, Geneve, Cahill J, Hildebrand D, 2012. Extending the range of an ancient crop, Salvia hispanica L-a new ω3 source. Genet Resour Crop Evol (59): 171-178. https://doi.org/10.1007/s10722-011-9673-x

Legendre P, 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74 (6): 1659-1673. https://doi.org/10.2307/1939924

Martínez C, Soza F, Garay E, 2012. Manual de establecimiento de cultivos. Escuela Agrícola Panamericana, República de Honduras. 70 pp.

Mateo R, Felicísimo A, Muñoz J, 2011. Modelos de distribución de especies: Una revisión sintética. Revista Chilena de Historia Natural 84 (2), 217-240. https://doi.org/10.4067/S0716-078X2011000200008

Miranda F, 2012. Guía técnica para el manejo del cultivo de la chía (Salvia hispanica) en Nicaragua. CECOOPSEMEIN RL, Managua-Sebaco, Nicaragua. 14 pp.

Morales L, Acevedo E, Castellaro G, Román L, Morales J, Alonso M, 2015. A simple method for estimating suitable territory for bioenergy species in Chile. Cienc Invest Agrar 42 (2): 227-242. https://doi.org/10.4067/s0718-16202015000200009

Muñoz L, Cobos A, Díaz O, Aguilera J, 2013. Chia seed (Salvia hispanica): An ancient grain and a new functional food. Food Rev Int 29 (4): 394-408. https://doi.org/10.1080/87559129.2013.818014

Orozco G, Durán N, González D, Zarazúa P, Ramírez G, Mena S, 2014. Proyecciones de cambio climático y potencial productivo para Salvia hispanica L. en las zonas agrícolas de México. Rev Mex Cienc Agric 10: 1831-1842.

Peña F, Guerrero P, Bizama G, Duarte M, Bustamante R, 2014. Climatic niche conservatism and biogeographical non-equilibrium in Eschscholzia californica (Papaveraceae), an invasive plant in the Chilean Mediterranean region. Plos One 9 (8): e105025. https://doi.org/10.1371/journal.pone.0105025

Phillips S, Anderson R, Schapire R, 2006. Maximum entropy modelling of species geographic distributions. Ecol Model 190 (3-4): 231-259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Phillips S, Dudik M, Schapire R, 2011. A brief tutorial on Maxent. AT&T Labs-Research Princeton University, NJ, USA. 38 pp.

Pianka E, 2011. Evolutionary ecology, 7th. ed. Eric R. Pianka, NY. 513 pp.

Pliscoff P, Fuentes T, 2011. Modelación de la distribución de especies y ecosistemas en el tiempo y en el espacio: una revisión de las nuevas herramientas y enfoques disponibles. Revista de Geografía Norte Grande 48: 61-79. https://doi.org/10.4067/S0718-34022011000100005

Ramírez J, Rosado J, Castellanos A, Chel L, 2012. Potencial productivo para el cultivo de chía (Salvia hispanica L.) en México y calidad del aceite extraído. Universidad Autónoma de Yucatán. Revista de la Facultad de Ingeniería Química (52): 32-35.

Ramírez-Jaramillo G, Lozano-Contreras M G, 2015. Potential for growing Salvia hispanica L., areas under rainfed conditions in Mexico. Agric Sci 6 (9): 1048-1057.

Richards J, Janes B, 2011. Tolerance limits, plants. In: Encyclopedia of biological invasion (Encyclopedia of the Natural World, N° 3). Univ. of California Press, Berkeley, USA. pp: 663-667.

Salisbury C, Ross F, 2000. Fisiología de las plantas: Desarrollo de las plantas y fisiología ambiental. Editorial Paraninfo, Madrid. 305 pp.

Schnelle F, 1968. Agrotopoclimatology. In: Natural resources, agroclimatological methods. pp: 251-260. UNESCO, Int. Publ., NY.

Schulte P, Healy T, Fangue N, 2011. Thermal performance curves, phenotypic plasticity, the time scales of temperature exposure. Acad J Integr Compar Biol 51 (5): 691-702. https://doi.org/10.1093/icb/icr097

Schultz N, 2009. Loma-Formationen der Küsten-Atacama/ Nordchile Unter Besonderer Berücksichtigung Rezenter Vegetations und Klimaveränderungen. Doctoral thesis. Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayern, Deutschland. 242 pp.

Soberón J, 2007. Grinnellian and Eltonian niches and geographic distributions of species. Ecol let 10 (12): 1115-1123.

Soberón J, 2011. Modelación de nicho y manejo de la biodiversidad (cap. IX). In: Conservación biológica: Perspectiva desde América Latina; Simonetti J, Dirzo R (eds.). pp: 143-159. Editorial Universitaria, Santiago, Chile.

Swets J, 1988. Measuring the accuracy of diagnostic systems. Science 240 (4857): 1285-1293. https://doi.org/10.1126/science.3287615

Vidal J, 2009. Efectos del factor térmico en el desarrollo y crecimiento inicial de pimiento (Capsicum annuum L.) cultivado en campo. Tesis de Magister. Universidad Nacional de Tucumán. Argentina. 94 pp.

Warren D, Glor R, Turelli M, 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62 (11): 2868-2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x




DOI: 10.5424/sjar/2017153-9935