Grain characteristics and composition of maize specialty hybrids

S. Zilic, M. Milasinovic, D. Terzic, M. Barac, D. Ignjatovic-Micic

Abstract


Improved nutritive and technological maize grain value is very important for its use in diets. In this work, the chemical composition and potential beneficial components, including total and soluble proteins, tryptophan, starch, sugars (sucrose and reducing sugars), and fibres were investigated in flour of eight specialty maize hybrids from Maize Research Institute Zemun Polje (ZP): two sweet, popping, red, white, waxy, yellow semiflint and yellow dent maize hybrids. In addition, digestibility of grain dry matter and viscosity of maize flour were determined. The highest nutritive value was recorded in sweet maize hybrids ZP 504su and ZP 531su which had the highest content of total protein, albumin, tryptophan, sugars and dietary fibres. Besides, low content of starch (55.32% and 54.59%, respectively) and lignin (0.39% and 0.45%) affected the highest dry matter digestibility (92.69% and 91.07%) of sweet maize flour. However, functional properties of ZP sweet hybrids were not satisfactory for food and industrial applications. In contrast, flour of ZP waxy maize hybrid was characterised by a clear and a high peak viscosity. All hybrids could be classified according to the sucrose content in three groups: a) > 4% (sweet and red hybrids-ZP 504su, ZP Rumenka), b) from 3 to 4% (waxy, standard dent and semi flint hybrids-ZP 704wx, ZP 434, ZP 633) and c) from 2 to 3% (sweet, white and popping maize hybrids-ZP 531su, ZP 74b, ZP 611k).α-Zein was the dominant protein fraction in all genotypes except the sweet maize hybrids, making 22.45% to 29.25% of the total protein content.


Keywords


carbohydrates; digestibility; protein fractions; speciality maize hybrids; viscosity; Zea mays

Full Text:

PDF

References


Amir J., Wright R.D., Cherry J.H., 1971. Chemical control of sucrose conversion to polysaccharides in sweet corn after harvest. J Agric Food Chem 19, 954-957.
http://dx.doi.org/10.1021/jf60177a021

Antony S.M., Han I.Y., Dawison P.L., 2002. Antioxidative effect of Maillard reaction products added to turkey meat during heating by add honey. J Food Sci 67, 1719-1723.
http://dx.doi.org/10.1111/j.1365-2621.2002.tb08712.x

Burge R.M., Duensing W.J., 1989. Processing and dietary fiber ingredient applications of corn bran. Cereal Foods World 34, 535-538.

Cortés G.A., Salinas M.Y., San Martín-Martínez E., Martínez-Bustos F., 2006. Stability of anthocyanins of blue maize after nixtamalization of separated pericarp-germ tip cap and endosperm fractions. J Cereal Sci 43, 57-62.
http://dx.doi.org/10.1016/j.jcs.2005.05.003

Dado R.G., 1999. Nutritional benefits of specialty corn grain hybrids in dairy diets. J Anim Sci 77, 197-207.
PMid:15526796

De Boever J.L., Cottyn B.G., Buysse F.X., Wainman F.W., Vanacker J.M., 1986. The use of an enzymatic technique to predict digestibility, metabolizable and net energy of compound feedstuffs for ruminants. Anim Feed Sci Technol 14, 203-214.
http://dx.doi.org/10.1016/0377-8401(86)90093-3

Didzbalis J., Ho C.T., 2001. Analysis of low molecular weight aldehydes formed during the Maillard reaction. In: Aroma active compounds in foods. Am Chem Soc, Washington, USA. pp. 196-207.



Fageer A.S.M., El Tinay A.H., 2004. Effect of genotype, malt pretreatment and cooking on in vitro protein digestibility and protein fractions of corn. Food Chem 84, 613-619.
http://dx.doi.org/10.1016/S0308-8146(03)00286-3

FAO, 1992. Maize in human nutrition. Report series 25. Food and Agricultural Organization, Rome, Italy.

FCC, 2004. General tests and assays. In: Food chemicals codex Ed 5 (Committee of Food Chemical Codex, Food and Nutrition Board, ed). The National Academies Press, Washington, USA. pp. 957-962.



Fergason V., 2001. High amylose and waxy corns. In: Specialty corns (Hallauer A.R., ed). Boca Raton, CRC Press, USA. pp. 63-84.



Graham G.G., Lembcke J., Morales E., 1990. Quality-protein maize as the sole source of dietary protein and fat for rapidly growing young children. Pediatrics 85, 85-91.
PMid:2296497

Gudmundsson M., 1994. Retrogradation of starch and the role of its components. Thermochim Acta 246, 329-341.
http://dx.doi.org/10.1016/0040-6031(94)80100-2

Hasjim J., Srichuwong S., Scott M.P., Jane J.L., 2009. Kernel composition, starch structure, and enzyme digestibility of opaque-2 maize and quality protein maize. J Agric Food Chem 57, 2049-2055.
http://dx.doi.org/10.1021/jf803406y
PMid:19206469

Hernández H., Bates L.S., 1969. A simple colorimetric method for zein determination in corn and its potential in screening for protein quality. J Cereal Chem 57, 129-132.

Huang S., Frizzi A., Florida C.A., Kruger D.E., 2006. High lysine and high tryptophan transgenic maize resulting from the reduction of both 19- and 22-kDa azeins. Plant Mol Biol 61, 525-535.
http://dx.doi.org/10.1007/s11103-006-0027-6
PMid:16830184

ICC, 1992. Official method for using the brabender amylograph, 115/1. International Association for Cereal Science and Technology, Viena, Austria.

Jaeger S.L., Luebbe M.K., Macken C.N., Erickson G.E., Klopfenstein T.J., Fithian W.A., Jackson D.S., 2006. Influence of corn hybrid traits on digestibility and the efficiency of gain in feedlot cattle1. J Anim Sci 84, 1790-1800.
http://dx.doi.org/10.2527/jas.2005-570
PMid:16775063

Karlsson M.E., Leeman A.M., Inger M.E., Björck I.M.E., Eliasson A.C., 2007. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chem 100, 136–146.
http://dx.doi.org/10.1016/j.foodchem.2005.09.032

Kereliuk G.R., Sosulski F.W., Kaldy M.S., 1995. Carbohydrates of North American corn (Zea mays). Food Res Int 28, 311-315.
http://dx.doi.org/10.1016/0963-9969(95)93530-8

Knott O.R., Hamilton R.I., Jones G.E., Kannenberg L., Carter E.N., Scott-Pearse F., Stappler H.A., 1995. Corn, harvest of gold: The history of field crop breeding in Canada. Univ Ext Press, University of Saskatchewan, Canada. pp. 130-139.

Landry J., Moureaux T., 1970. Heterogeneity of the glutelins of the grain corn. Selective extraction and composition in amino acids of the three isolated fractions. Bull Soc Chem Biol 52, 1021-1037.

Landry J., Moureaux T., 1980. Distribution and amino acid composition of protein groups located in different histological parts of maize grain. J Agric Food Chem 28, 1186-1191.
http://dx.doi.org/10.1021/jf60232a042
PMid:7451746

Landry J., Delhaye S., Damerval C., 2004. Protein distribution pattern in floury and vitreous endosperm of maize grain. Cereal Chem 81, 153-158.
http://dx.doi.org/10.1094/CCHEM.2004.81.2.153

Maillard L.C., 1912. Action des acides amides sucrés: formation des melanoidies per voie methodique. C R Seances Soc Biol Fil 154, 66-68. [In French].

Mertens D.R., 1992. Critical conditions in determining detergent fibers. Proc Forage Analysis Workshop, NFTA Forage Testing Assoc, Denver, CO, USA. Natl Forage Testing Assoc, Omaha, NE, USA. pp. C1-C8.



Mohd B.M.N., Wootton M., 1984. In vitro digestibility of hydroxypropyl maize, waxy maize and high amylase maize starches. Starch- Starke 36, 273-275.
http://dx.doi.org/10.1002/star.19840360805

Nurit E., Tiessen A., Pixley K.V., Palacios-Rojas N., 2009. Reliable and inexpensive colorimetric method for determining protein-bound tryptophan in maize kernels. J Agric Food Chem 57, 7233-7238.
http://dx.doi.org/10.1021/jf901315x
PMid:19624133

Official Gazette Of Sfry, 1987. The rule book of methods of sampling and of methods for performing physical, chemical and microbiological analyses of feeds. Ed 15. Institution for Standardization, Belgrade, Serbia.



Pajic Z., Radosavljevic M., 1987. Yield and carbohydrate grain composition in sweet corn (Zea mays L. saccharata). Proc XIVth Congress of Eucarpia, Nitra, Czeshkoslovakia. pp. 68-75.

Prasanna B.M., Vasal S.K., Kassahun B., Singh N.N., 2001. Quality protein maize. Curr Sci 81, 1308-1319.

Ptaszek A., Berski W., Ptaszek P., Witczak T., Repelewicz U., Grzesik M., 2009. Viscoelastic properties of waxy maize starch and selected non-starch hydrocolloids gels. Carbohydr Polymers 76, 567-577.
http://dx.doi.org/10.1016/j.carbpol.2008.11.023

Radosavljevic M., Bekric V., Bozovic I., Jakovljevic J., 2000. Physical and chemical properties of various corn genotypes as a criterion of technological quality. Genetika 32, 319-329.

Radosavljevic M., Pajic Z., Milasinovic M., 2006. Grain quality of ZP specialty corn hybrids. Zbornik naucnih radova Instituta PKB Agroekonomik 12, 59-65.



Reynolds T.L., Nemeth M.A., Glenn K.C., Ridley W.P., Astwood J.D., 2005. Natural variability of metabolites in maize grain: differences due to genetic background. J Agric Food Chem 53, 10061-10067.
http://dx.doi.org/10.1021/jf051635q
PMid:16366695

Ring S.G., Colonna P., Ianson K.J., Kalichvsky M.T., Miles M.J., Morris V.J., Orford P.D., 1987. The gelation and crystallization of amylopectin. Carbohydr Res 162, 277-293.
http://dx.doi.org/10.1016/0008-6215(87)80223-9

Schober T.J., Bean S.R., Boyle D.L., Park S.H., 2008. Improved viscoelastic zein-starch doughs for leavened gluten-free breads: their rheology and microstructure. J Cereal Sci 48, 755-767.
http://dx.doi.org/10.1016/j.jcs.2008.04.004

Segal G., Song R., Messing J., 2003. A new opaque variant of maize by a single dominant RNA-interferenceinducing transgene. Genetics 165, 387-397.
PMid:14504244 PMCid:1462732

Shewry P.R., 2007. Improving the protein content and composition of cereal grain. J Cereal Sci 46, 239-250.
http://dx.doi.org/10.1016/j.jcs.2007.06.006

Shukla R., Cheryan M., 2001. Zein: the industrial protein from corn. Indus Crops Prod 13, 171-192.
http://dx.doi.org/10.1016/S0926-6690(00)00064-9

Slade L., Levine H., 1987. Recent advances in starch retrogradation. In: Industrial polysacharides. Gordon and Breach Sci, NY, USA. pp. 387-430.

Sosulski F.W., Cadden A.M., 1982. Composition and physiological properties of several sources of dietary fiber. J Food Sci 47, 1472-1477.
http://dx.doi.org/10.1111/j.1365-2621.1982.tb04964.x

Van Soest P.J., 1963. Uses of detergents in the analysis of fibrous feeds. A rapid method for the determination of fibre and lignin. J Assoc Agric Chem 46, 829.

Vasal S.K., 2000. The quality protein maize story. Food and Nutrition Bulletin 21, 445-450.

Vasal S.K., Cordova H., Beck D.L., Edmeades G.O., 1996. Choices among breeding procedures and strategies for developing stress-tolerant maize germplasm. Proc Symposium Drought Low N-Tolerant Maize (Edmeades G.O., Banziger M., Michelson H.R., Pena-Valdivia C.B., eds). CIMMYT, Mexico. pp. 336-347.

Vyn T.J., Tollenaar M., 1998. Changes in chemical and physical quality parameters of maize grain during three decades of yield improvement. Field Crops Res 59, 135-140.
http://dx.doi.org/10.1016/S0378-4290(98)00114-2

Wang P., Liu W., Johnston D.B., Rausch K.D., Schmidt S.J., Tumbleson M.E., Singh V., 2010. Effect of endosperm hardness on an ethanol process using a granular starch hydrolyzing enzyme. Am Soc Agric Biol Eng 53, 307-312.

Watson S.A., 1987. Structure and composition. In: Corn: chemistry and technology (Watson S.A., Ramstad P.E., eds). Am Assoc Cereal Chem, Inc St Paul, MN, USA. pp. 53-82.

Weaver A.C., Hamaker B.R., Axtell J.D., 1998. Discovery of grain sorghum germplasm with high uncooked and cooked in vitro protein digestibilities. J Cereal Chem 5, 665-670.

Wolf M.J., Khoo V., Seckinger H.L., 1969. Distribution and subcellular structure of endosperm protem m varieties of ordinary and high-lysine maize. Cereal Chem 46, 253-263.

Wongsagonsup R., Varavinit S., Bemiller J.N., 2008. Increasing slowly digestable starch content of normal and waxy maize starch and properties of starch products. Cereal Chem 8, 738-745.
http://dx.doi.org/10.1094/CCHEM-85-6-0738

Zilic S., Hadzi-Taskovic Sukalovic V., Milasinovic M., Ignjatovic-Micic D, Maksimovic M., Semencenko V., 2010. Effect of micronisation on the composition and properties of the flour from white, yellow and red maize. Food Tech Biotechnol 48, 198-206.




DOI: 10.5424/sjar/20110901-053-10