Effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei raised in an integrated biofloc system with the seaweed Gracilaria birdiae

  • Luis O. Brito Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE http://orcid.org/0000-0002-6971-3020
  • Leonidas C. Junior Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE
  • Jéssika L. Abreu Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE
  • William Severi Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE
  • Laenne B. S. Moraes Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE
  • Alfredo O. Galvez Universidade Federal Rural de Pernambuco, Dept. Pesca e Aquicultura. Rua Dom Manuel de Medeiros, Dois Irmão, 52171-900, Recife, PE
Keywords: growth, nutrition, seaweed, shrimp, water quality

Abstract

            A trial was conducted for 42 days to evaluate the effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei cultivated in an integrated biofloc system with the seaweed Gracilaria birdiae. The experiment had a 2 × 2 factorial design (a biofloc monoculture or an integrated system with 32% (low) or 40% (high) crude protein content) with the following treatments: IS32 (an integrated system using low protein commercial feed); IS40 (an integrated system using high protein commercial feed); M32 (a monoculture system using low protein commercial feed); and M40 (a monoculture system using high protein commercial feed), all in triplicate. Shrimp individuals (0.23 ± 0.04 g) were stocked at a density of 500 shrimp/m3 and no water exchange was carried out during the experimental period. No significant influence (p > 0.05) was found to be caused by the integrated system or the crude protein levels on water quality. However, a significant influence (p < 0.05) was found for final weight (3.21–4.12 g), weight gain (2.97–3.89 g), yield (1.39–1.96 kg/m3) and feed conversion ratio (1.47–1.74). Growth was similar in IS32, M40 and IS40, indicating that crude protein levels can be reduced with no adverse effect on shrimp performance variables in integrated biofloc systems with G. birdiae.

Downloads

Download data is not yet available.

References

Angell AR, Angell SF, Nys R, Paul NA, 2016. Seaweed as a protein source for mono-gastric livestock. Trends Food Sci Technol 54: 74-84. https://doi.org/10.1016/j.tifs.2016.05.014

APHA, 2005. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC, USA. 560 pp.

Avnimelech Y, 2009. Biofloc Technology: A Practical Guide Book. World Aquaculture Society, Baton Rouge, USA. 182pp.

Becerra-Dórame MJ, Martínez-Porchas M, Martínez-Córdova LR, Rivas-Vega M, Lopez-Elias JÁ, Porchas-Cornejo MA, 2012. Production response and digestive enzymatic activity of the Pacific white shrimp Litopenaeus vannamei (Boone, 1931) intensively pre grown in microbial heterotrophic and autotrophic-based systems. The Scientific World Journal, Article ID 723654.

Brito LO, Arana LAV, Soares RB, Severi W, Miranda RH, Silva SMBC, Coimbra MRM, Galvez AO, 2014. Water quality, phytoplankton composition and growth of Litopenaeus vannamei (Boone) in an integrated biofloc system with Gracilaria birdiae (Greville) and Gracilaria domingensis (Kützing). Aquacul Int 22: 1649-1664. https://doi.org/10.1007/s10499-014-9771-9

Brito LO, Chagas AM, Silva EP, Soares RB, Severi W, Gálvez AO, 2016. Water quality, Vibrio density and growth of Pacific white shrimp Litopenaeus vannamei (Boone) in an integrated biofloc system with red seaweed Gracilaria birdiae (Greville). Aquacult Res 47: 940-950. https://doi.org/10.1111/are.12552

Chopin T, Cooper JA, Reid G, Cross S, Moore C, 2012. Open-water integrated multi-trophic aquaculture: environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev Aquacult 4: 209-220. https://doi.org/10.1111/j.1753-5131.2012.01074.x

Correia ES, Wilkenfeld JS, Morris TM, Wei L, Prangnell DI, Samocha TM, 2014. Intensive nursery production of the Pacific white shrimp Litopenaeus vannamei using two commercial feeds with high and low protein content in a biofloc-dominated system. Aquacult Eng 59: 48-54. https://doi.org/10.1016/j.aquaeng.2014.02.002

Cruz-Suárez LE, León A, Peña-Rodríguez A, Rodríguez-Peña G, Moll B, Ricque-Marie D, 2010. Shrimp Ulva co-culture: a sustainable alternative to diminish the need for artificial feed and improve shrimp quality. Aquaculture 301: 64-68. https://doi.org/10.1016/j.aquaculture.2010.01.021

Du R, Liu L, Wang A, Wang Y, 2013. Effects of temperature, algae biomass and ambient nutrient on the absorption of dissolved nitrogen and phosphate by Rodophyte Gracilaria asiatica. Chin J Oceanol Limn 31: 353-365. https://doi.org/10.1007/s00343-013-2114-2

Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P, 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish Shellfish Immun 41: 332-339. https://doi.org/10.1016/j.fsi.2014.09.004

Felföldy L, Szabo E, Tothl L, 1987. A biológiai vizminösités. Vizügyi Hodrobiológia Vizdok, Budapest, Hungary. 258 pp.

Furtado PS, Ganoa CAP, Poersch LH, Wasielesky JrW, 2013. Application of different doses of calcium hydroxide in the farming shrimp Litopenaeus vannamei with the biofloc technology (BFT). Aquacul Int 22: 1009-1023. https://doi.org/10.1007/s10499-013-9723-9

Gamboa-Delgado J, Peña-Rodríguez A, Ricque-Marie D, Cruz-Suárez LE, 2011. Assessment of nutrient allocation and metabolic turnover rate in Pacific white shrimp Litopenaeus vannamei co-fed live macroalgae Ulva clathrata and inert feed: dual stable isotope analysis. J Shellfish Res 30: 969-978. https://doi.org/10.2983/035.030.0340

Golterman HJ, Clyno RS, Ohnstad MA, 1978. Methods for physical and chemical analysis of freshwaters. Oxford. Blackwell Sci. Publ., London. 213 pp.

Gressler V, Yokoya NS, Fujii MT, Colepicolo P, Filho JM, Torres RP, Pinto E, 2010. Lipid, fatty acid, protein, amino acid and ash contents in four Brazilian red algae species. Food Chem 120: 585-590. https://doi.org/10.1016/j.foodchem.2009.10.028

Jatobá A, Silva BC, Silva JS, Vieira FN, Mouriño JLP, Seiffert WQ, Toledo TM, 2014. Protein levels for Litopenaeus vannamei in semi-intensive and biofloc systems. Aquaculture 432: 365-371. https://doi.org/10.1016/j.aquaculture.2014.05.005

Kolanjinathan K, Ganesh P, Saranraj P, 2014. Pharmacological importance of seaweeds: A Review. World J Fish Mar Sci 6: 1-15.

Koroleff F, 1976. Determination of nutrients. In: Methods of seawater analysis; Grasshoff K (ed.). pp: 117-187. Verlag Chemie Weinhein, NY.

Kureshy N, Davis DA, 2002. Protein requirement for maintenance and maximum weight gain for the Pacific white shrimp, Litopenaeus vannamei. Aquaculture 204: 125-143. https://doi.org/10.1016/S0044-8486(01)00649-4

Lander TR, Robison SMC, Macdonald BA, Martin JD, 2013. Characterization of the suspended organic particles released from salmon farms and their potential as food supply for the suspension feeder Mytilus edulis in integrated multi-trophic aquaculture (IMTA) systems. Aquaculture 406-407: 169-171. https://doi.org/10.1016/j.aquaculture.2013.05.001

Mackereth FJH, Heron J, Talling JF, 1978. Water analysis: some revised methods for limnologists. Oxford. Blackwell Sci. Publ. London. 120 pp.

Marinho-Soriano E, Azevedo CAA, Trigueiro TG, Pereira DC, Carneiro MAA, 2011. Bioremediation of aquaculture wastewater using macroalgae and Artemia. Int Biodeterior Biodegrad 65: 253-257. https://doi.org/10.1016/j.ibiod.2010.10.001

Martinez-Córdova LR, Martinez-Porchas M, Perez-Velazquez M, González-Félix M, Campaña-Torres A, Bringas-Alvarado L, 2010. Performance of three diets with different protein: energy ratios on the culture of the pacific white shrimp, Litopenaeus vannamei, under practical descending temperature conditions. Atlântica 32: 111-118. https://doi.org/10.5088/atl.2010.32.1.111

Pallaoro MF, Vieira FN, Hayashi L, 2016. Ulva lactuca (Chlorophyta Ulvales) as co-feed for Pacific white shrimp. J Appl Phycol 28: 3659-3665. https://doi.org/10.1007/s10811-016-0843-2

Peña-Rodriguez A, Magallon-Barajas FJ, Cruz-Suarez LE, Elizondo-Gonzalez, R, Moll B, 2017. Effects of stocking density on the performance of brown shrimp Farfantepenaeus californiensis co-cultured with the green seaweed Ulva clathrate. Aquacult Res 48: 2803-2811. https://doi.org/10.1111/are.13114

Perez-Velazquez M, González-Félix ML, Jaimes-Bustamente F, Martínez-Córdova LR, Trujillo-Villalba DA, Davis DA, 2007. Investigation of the effects of salinity and dietary protein level on growth and survival of pacific white shrimp, Litopenaeus vannamei. J World Aquacult Soc 38: 475-485. https://doi.org/10.1111/j.1749-7345.2007.00121.x

Peso-Echarri P, Frontela-Saseta C, González-Bermúdez CA, Ros-Berruezo GF, Martínez-Garciá C, 2012. Polisacáridos de algas como ingredientes funcionales em acuicultura marina: alginato, carragenato y ulvano. Rev Biol Mar Oceanog 47: 373-381. https://doi.org/10.4067/S0718-19572012000300001

Ren JS, Stenton-Dozey J, Plew DR, Fang J, Gall M, 2012. An ecosystem model for optimizing production in integrated multitrophic aquaculture systems. Ecol Model 246: 34-46. https://doi.org/10.1016/j.ecolmodel.2012.07.020

Sánchez-Romero A, Miranda-Baeza A, López-Elías JA, Martínez-Córdova LR, Tejeda-Mansir A, Márquez-Ríos E, 2013. Efecto del fotoperiodo y la razón camarón:macroalga en la remoción de nitrógeno amoniacal total por Gracilaria vermiculophylla, en cultivo con Litopenaeus vannamei, sin recambio de água. Lat Am J Aquat Res 41: 888-897. https://doi.org/10.3856/vol41-issue5-fulltext-9

Shiau SY, 1998. Nutrient requirements of penaeid shrimps. Aquaculture 164: 77-93. https://doi.org/10.1016/S0044-8486(98)00178-1

Shpigel M, Ari TB, Shauli L, Odintsov V, Ben-Ezra D, 2016. Nutrient recovery and sludge management in seabream and grey mullet co-culture in Integrated Multi-Trophic Aquaculture (IMTA). Aquaculture 464: 316-322. https://doi.org/10.1016/j.aquaculture.2016.07.007

Syad AN, Shunmugiah KP, Kasi PD, 2013. Seaweeds as nutritional supplements: Analysis of nutritional profile, physicochemical properties and proximate composition of G. acerosa and S. wightii. Biomed Prev Nutr 3: 139-144. https://doi.org/10.1016/j.bionut.2012.12.002

Tabarsa M, Rezaei M, Ramezanpour Z, Waaland JR, 2012. Chemical compositions of the marine algae Gracilaria salicornia (Rhodophyta) and Ulva lactuca (Chlorophyta) as a potential food source. J Sci Food Agr 92: 2500-2506. https://doi.org/10.1002/jsfa.5659

Tacon AGJ, 1987. The nutrition and feeding of farmed fish and shrimp. A training manual 1 - The essential nutrients. FAO, Rome.

Troell M, Joyce A, Chopin T, Neori A, Buschman A, Fang JG, 2009. Ecological engineering in aquaculture - Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297: 1-9. https://doi.org/10.1016/j.aquaculture.2009.09.010

Tsutsui I, Kanjanaworakul P, Srisapoome P, Aue-Umneoy D, Hamano K, 2010. Growth of giant tiger prawn, Penaeus monodon Fabricus, under co-culture with a discarded filamentous seaweed Chaetomorpha ligustica (Kutzing), at an aquarium-scale. Aquacul Int 18: 545-553. https://doi.org/10.1007/s10499-009-9274-2

Van Wyk P, 1999. Nutrition and feeding of Litopenaeus vannamei in intensive culture systems. In: Farming marine shrimp in recirculating freshwater systems; Van Wyk P, Davis-Hodgkins M, Laramore R, Main KL, Mountain Scarpa J (eds.). pp: 125-140. Fla Dept Agr Consum Serv - Harbor Branch Oceanic Institute, Florida.

Van Wyk P, Scarpa J, 1999. Water quality requirements and management. In: Farming marine shrimp in recirculating freshwater systems; Van Wyk P, Davis-Hodgkins M, Laramore R, Main KL, Mountain Scarpa J (eds.). pp: 141-162. Fla Dept Agr Consum Serv, Harbor Branch Oceanic Institute, FL, USA.

Xu WJ, Pan LQ, 2013. Enhancement of immune response and antioxidant status of Litopenaeus vannamei juvenile in biofloc-based culture tanks manipulating high C/N ratio of feed input. Aquaculture 412-413: 117-124. https://doi.org/10.1016/j.aquaculture.2013.07.017

Xu WJ, Pan LQ, 2014. Dietary protein level and C/N ratio manipulation in zero-exchange culture of Litopenaeus vannamei: Evaluation of inorganic nitrogen control, biofloc composition and shrimp performance. Aquacult Res 45: 1842-1851.

Xu WJ, Pan LQ, Sun XH, Huang J, 2013. Effects of bioflocs on water quality, and survival, growth and digestive enzyme activities of Litopenaeus vannamei (Boone) in zero-water exchange culture tanks. Aquacult Res 44: 1093-1102. https://doi.org/10.1111/j.1365-2109.2012.03115.x

Yun H, Shahkar E, Katya K, Jang IK, Kim SK, Bai SC, 2016. Effects of bioflocs on dietary protein requirement in juvenile whiteleg Shrimp, Litopenaeus vannamei. Aquacult Res 47: 3203-3214. https://doi.org/10.1111/are.12772

Published
2018-04-26
How to Cite
Brito, L. O., Junior, L. C., Abreu, J. L., Severi, W., Moraes, L. B. S., & Galvez, A. O. (2018). Effects of two commercial feeds with high and low crude protein content on the performance of white shrimp Litopenaeus vannamei raised in an integrated biofloc system with the seaweed Gracilaria birdiae. Spanish Journal of Agricultural Research, 16(1), e0603. https://doi.org/10.5424/sjar/2018161-11451
Section
Animal production