Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs

  • Rosa Peiró Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Camino de Vera s/n, 46022 Valencia http://orcid.org/0000-0002-3009-2343
  • Jaume X. Soler Botánica Mediterránea S.L., C/ Constitució 31, 03740 Gata de Gorgos (Alicante) http://orcid.org/0000-0003-4941-1874
  • Andrés Crespo Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Camino de Vera s/n, 46022 Valencia
  • Carles Jiménez Servicio de Sanidad Vegetal de la Generalitat Valenciana, Av. d’Alacant s/n, 46460 Silla (Valencia) http://orcid.org/0000-0003-4754-0744
  • Félix Cabello IMIDRA, Comunidad de Madrid, Dept. Investigación Agroalimentaria, Alcalá de Henares (Madrid) http://orcid.org/0000-0001-5810-4548
  • Carmina Gisbert Universitat Politècnica de València, Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Camino de Vera s/n, 46022 Valencia http://orcid.org/0000-0002-4620-1065
Keywords: microsatellites, AFLPs, M-AFLPs, ‘Moscatel’, Vitis vinifera

Abstract

Genetic variability is needed to face environmental changes and pathogen constrains. In addition, the search for intravarietal variability contributes to the avoidance of genetic erosion, preserving clones that are adapted to particular conditions. Variability is also important to diversify grapevine-derived products. In this work, we have analyzed the genetic variability of ‘Muscat germplasm’ including samples from neglected vineyards from Alicante and Valencia provinces, accessions of the germplasm collections of ‘Colección de Vides de El Encín’ (Alcalá de Henares, Madrid) and ‘La Casa de las Vides’ (Agullent, Valencia), accessions supplied by nurseries of Valencia province, and ‘Muscat of Alexandria’ clones selected using differential ampelographic characteristics in selection programs (La Marina, Alicante). Fifteen microsatellites (SSRs) were used to study intervarietal variability. The SSR fingerprinting allowed the identification of some accessions, variants, and synonymies. Amplified Fragment Length Polymorphisms (AFLPs) markers and Microsatellite-AFLPs were used to determine the variability attended in ‘Muscat of Alexandria’ accessions. A CAPs (Cleaved Amplified Polymorphic Sequences) marker, recently developed for the discrimination of ‘Muscat’ flavor genotypes using the SNP1822 G>T, was assessed and showed that all the analyzed accessions were ‘Muscat’ flavored. The variation found among the analyzed germplasm is very interesting because variants within ‘Muscat of Alexandria’, ‘Muscat Italia’, and ‘Muscat d’Istambul’ have been identified. In addition, intravarietal genetic variation was found among the analyzed accessions in ‘Muscat of Alexandria’ from selection programs.

Downloads

Download data is not yet available.

References

Alonso de Herrera G, 1645. Agricultura general que trata de la labranza del campo, y sus particularidades, crianza de animales, propiedades de las plantas que en ella se contienen, y virtudes provechosas a la salud humana. Bernardo Herbada, Madrid. 479 pp.

Álvarez de Sotomayor JM, 1979. Los doce libros de agricultura que escribió en latín Lucio Junio Moderato Columela, traducidos al castellano por D. Juan María Álvarez de Sotomayor y Rubio. Miguel de Burgos, Madrid. 52 pp.

Anderson K, Aryal NR, 2013. Where in the world are various winegrape varieties grown? Evidence from a new database. Wine Econ Res Centre, University of Adelaide.

Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, López MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun HI, Cabello F, et al., 2006. Multiple origins of cultivated grapevine (Vitis vinifera L. ssp. sativa) based on chloroplast DNA polymorphisms. Mol Ecol 15: 3707-3714. https://doi.org/10.1111/j.1365-294X.2006.03049.x

Banks TW, Benham J, 2008. Genographer, version 2.1.4. http://sourceforge.net/projects/ genographer. Accessed 9 May 2017.

Botstein D, White RL, Skolnick M, Davis RW, 1980. Construction of a genetic linkage map in man using fragment length polymorphisms. Am J Hum Genet 32: 314-331.

Brookfield JFY, 1996. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol Ecol 5: 453-455. https://doi.org/10.1111/j.1365-294X.1996.tb00336.x

Cabezas JA, Cervera MT, Arroyo-García R, Ibáñez J, Rodríguez-Torres I, Borrego J, Cabello F, Martínez-Zapater JM, 2003. Garnacha and Garnacha Tintorera: genetic relationships and the origin of Teinturier varieties cultivated in Spain. Am J Enol Vitic 54: 237-245.

Cabrera MR, 1992. El conreu de la vinya i l'elaboració de la pansa a la comarca de la Marina. Instituto de Cultura Juan Gil-Albert, Diputació Provincial d'Alacant, Spain. 118 pp.

Calvo J, 2003. Agricultura, industria y comercio en la Dénia del siglo XIX. Club Universitario, Alicante, Spain. 367 pp.

Carimi F, Mercati F, De Michele R, Fiore MC, Riccardi P, Sunseri F, 2011. Intra-varietal genetic diversity of the grapevine (Vitis vinifera L.) cultivar 'Nero d'Avola' as revealed by microsatellite markers. Genet Res Crop Evol 58: 967-974. https://doi.org/10.1007/s10722-011-9731-4

Cavanilles AJ, 1795. Observaciones sobre la historia natural, geografía, agricultura, población y frutos del Reino de Valencia. Imprenta Real, Madrid. 279 pp.

Chabas R, 1972. Historia de la ciudad de Denia. Instituto de Estudios Alicantinos, Alicante, Spain. 260 pp.

Cipriani G, Marrazzo MT, Di Gaspero G, Pfeiffer A, Morgante M, Testolin R, 2008. A set of microsatellite markers with long core repeat optimized for grape (Vitis spp.) genotyping. BMC Plant Biol 8: 127. https://doi.org/10.1186/1471-2229-8-127

Cipriani G, Spadotto A, Jurman I, Di Gaspero G, Crespan M, Meneghetti S, Frare E, Vignani R, Cresti M, Morgante M, Pezzotti M, Pe E, Policriti A, Testolin R, 2010. The SSR-based molecular profile of 1005 grapevine (Vitis vinifera L.) accessions uncovers new synonymy and parentages, and reveals a large admixture amongst varieties of different geographic origin. Theor Appl Gen 121: 1569-1585. https://doi.org/10.1007/s00122-010-1411-9

Crespan M, 2003. The parentage of 'Muscat of Hamburg'. Vitis 42: 193-197.

Crespan M, Milani N, 2001. The Muscats: a molecular analysis of synonyms, homonyms and genetic relationships within a large family of grapevine cultivars. Vitis 40: 23-30.

Cretazzo E, Meneghetti S, De Andrés MT, Gaforio L, Frare E, Cifre J, 2010. Clone differentiation and varietal identification by means of SSR, AFLP, SAMPL and M-AFLP in order to assess the clonal selection of grapevine: the case of study of Manto Negro, Callet and Moll, autochthonous cultivars of Majorca. Ann Appl Biol 157: 213-227. https://doi.org/10.1111/j.1744-7348.2010.00420.x

Dalmasso G, Dell'Olio G, Cosmo I, De Gaudio S, Ciasca L, Mazzei, A, Zappala A, Bruni B, 1964. http://catalogoviti.politicheagricole.it/scheda.php?codice=153. Accessed 9 May 2017.

DGAIC, 1891. Avance estadístico sobre cultivo y producción de la vid en España formado por la Junta Consultiva Agronómica. Madrid Tipografía de L Péant e Hijos. Dirección General de Agricultura, Industria y Comercio, Madrid. 195 pp.

Dies E, Gómez C, Guérin P, 1993. El vino en los inicios de la cultura ibérica: nuevas excavaciones en L’Alt de Benimaquia, Denia. Revista Arqueología 142: 16-27.

Emanuelli F, Battilana J, Costantini L, Le Cunff L, Boursiquot JM, This P, Grando MS, 2010. A candidate gene association study on muscat flavor in grapevine (Vitis vinifera L.) BMC Plant Biol 10: 241. https://doi.org/10.1186/1471-2229-10-241

Emanuelli F, Sordo M, Lorenzi S, Battilana J, Grando MS, 2014. Development of user-friendly functional molecular markers for VvDXS gene conferring muscat flavor in grapevine. Mol Breed 33: 235-241. https://doi.org/10.1007/s11032-013-9929-6

Fanizza G, Coronoa MG, Resta P, 2000. Analysis of genetic relationships among Muscat grapevines in Apulia (South Italy) by RAPD markers. Vitis 39: 159-161.

Favà, 2001. Diccionari dels noms dels ceps i raïms. L'ampelonimia catalana. Institut d'Estudis Catalans, 225 pp.

Felsenstein J, 2008. PHYLIP (Phylogeny Inference Package) v3.69. http://evolution.genetics.washington.edu/phylip.html. Accessed 9 May 2017.

Forni G, 2012. The origin of "Old World" viticulture. In: Caucasus and Northern Black Sea Region; Maghradze D, Rustioni L, Scienza A, Turok J, Failla O (eds.). pp: 27-38. Vitis Special Issue, Siebeldingen.

Grassi F, Labra M, Imazio S, Spada A, Sgorbati S, Scienza A, Sala F, 2003. Evidence of a secondary grapevine domestication centre detected by SSR analysis. Theor Appl Genet 107: 1315-1320. https://doi.org/10.1007/s00122-003-1321-1

Hidalgo L, 1999. Tratado de viticultura general. Mundi-Prensa, Madrid. 1172 pp.

Ibáñez J, Vargas AM, Palancar M, Borrego J, de Andrés MT, 2009. Genetic relationships among table grape varieties. Am J Enol Vitic 60: 35-42.

Jiménez-Cantizano A, Lara M, Ocete ME, Ocete R, 2012. Characterization of the relic Almuñécar grapevine cultivar. Span J Agric Res 10: 454-460. https://doi.org/10.5424/sjar/2012102-549-11

Lacombe T, Boursiquot JM, Lacou V, Di Vecchi-Staraz M, Peros JM, This P, 2013. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.) Theor Appl Genet 126: 401-414. https://doi.org/10.1007/s00122-012-1988-2

Laucou V, Lacombe T, Dechesne F, Siret R, Bruno JP, Dessup M, Dessup T, Ortigosa P, Parra P, Roux C, et al., 2011. High throughput analysis of grape genetic diversity as a tool for germplasm collection management. Theor Appl Genet 121: 1233-1245. https://doi.org/10.1007/s00122-010-1527-y

Liu K, Muse SV, 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21: 2128-2129. https://doi.org/10.1093/bioinformatics/bti282

Mateo JJ, Jiménez M, 2000. Monoterpenes in grape juices and wines. J Chromatograph A 88: 557-567. https://doi.org/10.1016/S0021-9673(99)01342-4

McGovern PE, Rudolph HM, 1996. The analytical and archaeological challenge of detecting ancient wine: two case studies from the ancient Near East. In: The origins and ancient history of wine; McGovern PE, Fleming SJ, Katz SH (eds.). pp: 57-67. Gordon and Breach, NY. https://doi.org/10.4324/9780203392836

McGovern PE, Glusker DL, Exner LJ, Voigt MM, 1996. Neolithic resinated wine. Nature 381: 480-481. https://doi.org/10.1038/381480a0

Mena A, Martínez J, Fernández-González M, 2014. Recovery, identification and relationships by microsatellite analysis of ancient grapevine cultivars from Castilla-La Mancha: the largest wine growing region in the world. Genet Res Crop Evol 61: 625-637. https://doi.org/10.1007/s10722-013-0064-3

Meneghetti S, Costacurta A, Frare E, Da Rold G, Migliaro D, Morreale G, Crespan M, Sotés V, Calò A, 2011. Clones identification and genetic characterization of Garnacha grapevine by means of different PCR-derived markers systems. Mol Biotechnol 48: 244-254. https://doi.org/10.1007/s12033-010-9365-3

Meneghetti S, Costacurta A, Morreale G, Calò A, 2012. Study of intravarietal genetic variability in grapevine cultivars by PCR-derived molecular markers and correlations with the geographic origin. Mol Biotechnol 50: 72-85. https://doi.org/10.1007/s12033-011-9403-9

Nei MF, 1978. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 383-390.

Nei MF, Li WH, 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76: 5269-5273. https://doi.org/10.1073/pnas.76.10.5269

Nei MF, Tajima F, Tateno Y, 1983. Accuracy of phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19: 153-170. https://doi.org/10.1007/BF02300753

Page DM, 2011. Treeview, Version 1.6.6. http://taxonomy/zoology.gla.ac.uk/rod/rod.html. Accessed 09 May 2017.

Peakall R, Smouse PE, 2012. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28: 2537-2539. https://doi.org/10.1093/bioinformatics/bts460

Robinson J, 1986. Vines grapes & wines: the first complete guide to grapes. Mitchell Beazley, NY. 213 pp.

Robinson J, Harding J, Vouillamoz J, 2012. Wine Grapes - A complete guide to 1,368 vine varieties, including their origins and flavours. Allen Lane, London, UK. 1280 pp.

Rousset F, 2008. Genepop'007: A complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8: 103-106. https://doi.org/10.1111/j.1471-8286.2007.01931.x

Scienza A, Versini G, Mattivi F, 1989. Il profilo ed antocianico dell'uva e del vino di "Moscato rosa". Accademia Italiana della Vite e del Vino 41: 159-181.

This P, Lacombe T, Thomas MR, 2006. Historical origins and genetic diversity of wine grapes. Trends Genet 22: 511-519. https://doi.org/10.1016/j.tig.2006.07.008

Zegels A, 2011. Dictionnaire français des vins d'Espagne. http://static.skynetblogs.be/media/129278/3947500789.2.pdf. Accessed 09 May 2017.

Zohary D, Hopf M, 2000. Domestication of plants in the Old World. Oxford University Press, NY, USA. 316 pp.

Published
2018-07-11
How to Cite
Peiró, R., Soler, J. X., Crespo, A., Jiménez, C., Cabello, F., & Gisbert, C. (2018). Genetic variability assessment in ‘Muscat’ grapevines including ‘Muscat of Alexandria’ clones from selection programs. Spanish Journal of Agricultural Research, 16(2), e0702. https://doi.org/10.5424/sjar/2018162-12537
Section
Plant breeding, genetics and genetic resources