An artificial neural network model to predict the effective work time of different agricultural field shapes

  • Marco Fedrizzi Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Francesca Antonucci Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Giulio Sperandio Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Simone Figorilli Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Federico Pallottino Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome)
  • Corrado Costa Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria (CREA) - Centro di Ricerca Ingegneria e Trasformazioni Agroalimentari, Via della Pascolare 16, 00015 Monterotondo (Rome) http://orcid.org/0000-0003-3711-1399
Keywords: multivariate statistics, precision agriculture, non-linear modelling, logistics, agricultural productivity

Abstract

The aim of this study was to find a model able to extract the net time per unit of net worked area from different agricultural field basic shapes (square, circle, rectangle and triangle) considering the following variables: field gross area, working speed, number of turnings (these depending on the effective working width), side length parallel and orthogonal to working direction, and working direction type. Being this a non-linear problem, an approach based on artificial neural networks is proposed. The model was trained using an artificial dataset calculated for the various shapes (internal test) and then tested on 47 different agricultural operations extracted by a real field dataset for the estimation of the net time (external test). The net time records obtained from both, the trained model and the external test, were correlated and the performance parameter r was extracted. Both regression coefficients (r), for the training and internal test, appear to be excellent being equal to 0.98 with respect to traditional linear approach (0.13). The variable “number of turnings” scored the highest impact, with a value equal to 44.34% for the net time estimation. Finally, the r correlation parameter for the external test resulted to be very high (0.80). This information is very valuable of the use of information management system for precision agriculture.

Downloads

Download data is not yet available.

References

Abdou HA, Pointon J, El-Masry A, Olugbode M, Lister RJ, 2012. A variable impact neural network analysis of dividend policies and share prices of transportation and related companies. J Int Financ Market Inst Money 22 (4): 796-813. https://doi.org/10.1016/j.intfin.2012.04.008

Abramo G, Costa C, D'Angelo CA, 2015. A multivariate stochastic model to assess research performance. Scientometrics 102: 1755-1772. https://doi.org/10.1007/s11192-014-1474-5

Backman J, Oksanen T, Visala A, 2012. Navigation system for agricultural machines: Nonlinear model predictive path tracking. Comput Electron Agr 82: 32-43. https://doi.org/10.1016/j.compag.2011.12.009

Biondi P, 1999. Meccanica agraria: le macchine agricole. UTET, Torino (Italy). pp: 547-561.

Bochtis DD, Sørensen CG, 2009. The vehicle routing problem in field logistics part I. Biosyst Eng 104: 447-457. https://doi.org/10.1016/j.biosystemseng.2009.09.003

Chong IG, Jun CH, 2005. Performance of some variable selection methods when multicollinearity is present. Chemom Intell Lab Syst 78 (1): 103e12.

Costa C, Menesatti P, Spinelli R, 2012. Performance modelling in forest operations through partial least square regression. Silva Fennica 46 (2): 241-252. https://doi.org/10.14214/sf.57

Demetriou D, Stillwell J, See L, 2013. A GIS-based shape index for land parcels. Proc. of the SPIE 8795, 1st Int Conf on Remote Sensing and Geoinformation of the Environment (RSCy2013), 87951C (5 August 2013) Paphos, Cyprus.

Febbi P, Menesatti P, Costa C, Pari L, Cecchini M, 2015. Automated determination of poplar chip size distribution based on combined image and multivariate analyses. Biomass Bioenerg 73: 1-10. https://doi.org/10.1016/j.biombioe.2014.12.001

Gawroński K, Jasnowska K, 2007. Assesment of MapInfo and geomedia spatial information system from the economic, technical and ergonomic point of view. Czasopismo Towarzystwa Geodezyjnego Zachodniej Ukrainy 13 (1): 185-189.

Gąsiorowski J, Bielecka E, 2014. Land fragmentation analysis using morphometric parameters. Proc 9th Int Conf Environ Eng, 22-23 May, Vilnius, Lithuania, pp: 978-609. https://doi.org/10.3846/enviro.2014.205

Guerrieri M, Fedrizzi M, Antonucci F, Pallottino F, Sperandio G, Pagano M, Figorilli S, Menesatti P, Costa C, 2016. An innovative multivariate tool for fuel consumption and costs estimation of agricultural operations. Span J Agric Res 14 (4): e0209. https://doi.org/10.5424/sjar/2016144-9490

Gupta N, 2013. Artificial neural network. Network Complex Syst 3 (1): 24-28.

Harrop Galvao RK, Ugulino Araujo MC, Emídio Jose G, Coelho Pontes MJ, Cirino Silva E, Bezerra Saldanha TC, 2005. A method for calibration and validation subset partitioning. Talanta 67: 736-740. https://doi.org/10.1016/j.talanta.2005.03.025

Janus J, Taszakowski J, 2015. The idea of ranking of setting priorities for land consolidation works. Geomatics Landmanage Landscape 1: 31-43. https://doi.org/10.15576/GLL/2015.1.31

Kayacan E, Kayacan E, Ramon H, Saeys W, 2014. Nonlinear modeling and identification of an autonomous tractor–trailer system. Comput Electron Agr 106: 1-10. https://doi.org/10.1016/j.compag.2014.05.002

Kraus T, Ferreau HJ, Kayacan E, Ramon H, De Baerdemaeker J, Diehl M, Saeys W, 2013. Moving horizon estimation and nonlinear model predictive control for autonomous agricultural vehicles. Comput Electron Agr 98: 25-33. https://doi.org/10.1016/j.compag.2013.06.009

Kwinta A, Gniadek J, 2017. The description of parcel geometry and its application in terms of land consolidation planning. Comput Electron Agr 136: 117-124. https://doi.org/10.1016/j.compag.2017.03.006

Lundström C, Lindblom J, 2016. Considering farmers' situated expertise in using AgriDSS to foster sustainable farming practices in precision agriculture. 13th Int Conf on Precision Agriculture, Jul 31-Aug 3, St. Louis, MO, USA.

Manfredi E, 1971. Raccomandazione A.I.G.R. IIIa sezione "denominazione, simbolo e unità di misura delle grandezze fondamentali relative all'impiego delle macchine in agricoltura, con particolare riguardo alle colture erbacee". Rivista di Ingegneria Agraria 2 (4): 258-260.

Oksanen T, 2013. Shape-describing indices for agricultural field plots and their relationship to operational efficiency. Comput Electron Agr 98: 252-259. https://doi.org/10.1016/j.compag.2013.08.014

Schultz TW, 1964. Transforming traditional agriculture. Yale Univ Press, New Haven.

Specht DF, 1991. A general regression neural network. IEEE T Neural Networ 2 (6): 568-576. https://doi.org/10.1109/72.97934

Published
2019-04-15
How to Cite
Fedrizzi, M., Antonucci, F., Sperandio, G., Figorilli, S., Pallottino, F., & Costa, C. (2019). An artificial neural network model to predict the effective work time of different agricultural field shapes. Spanish Journal of Agricultural Research, 17(1), e0201. https://doi.org/10.5424/sjar/2019171-13366
Section
Agricultural engineering