Effects of white shrimp (Litopenaeus vannamei) and tilapia nilotica (Oreochromis niloticus var. Spring) in monoculture and co-culture systems on water quality variables and production in brackish low-salinity water earthen ponds during rainy and dry seasons

  • Jorge Juárez-Rosales Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, CP 42184
  • Jesus T. Ponce-Palafox Universidad Autónoma de Nayarit, Escuela Nacional de Ingeniería Pesquera, Laboratorio de Bioingeniería Costera. San Blas Nayarit, CP 63740 http://orcid.org/0000-0002-1088-7114
  • Alma D. Román-Gutierrez Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, CP 42184
  • Elena M. Otazo-Sánchez Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, CP 42184
  • Griselda Pulido-Flores Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Básicas e Ingeniería, Área Académica de Química. Posgrado en Ciencias Ambientales. Pachuca Hidalgo, CP 42184
  • Sergio G. Castillo-Vargasmachuca Universidad Autónoma de Nayarit, Escuela Nacional de Ingeniería Pesquera, Laboratorio de Bioingeniería Costera. San Blas Nayarit, CP 63740
Keywords: effects water, aquaculture, commercial farm, season different, polyculture

Abstract

Aim of study: To determine the effects of white shrimp (Litopenaeus vannamei) and tilapia nilotica (Oreochromis niloticus var. Spring) in monoculture and co-culture on water quality variables and production in earthen ponds during dry and rainy seasons.

Area of study: A shrimp farm (total area 20 ha) at Chiripa, San Blas Nayarit, Northwest coast of Mexico (21° 37' 34.53 " N; 105° 18' 16.31" W).

Material and methods: Two production cycles were performed in a completely randomized design consisting of two treatments and three replications each during rainy season (September-December) and dry season (February-May). Shrimp was the main crop and tilapia the secondary species.

Main results: White shrimp (10 org/m2) can be co-cultured with Nile tilapia at a stocking high density (4 org/m2), leading to improved water quality and better utilization of nutrients in dry season than in rainy season. However, the shrimp’ highest weight was recorded in the tilapia-shrimp co-culture ponds during rainy season due to higher water temperature and better quality of live food. The mean individual weight, biomass and survival of the shrimp, in co-culture ponds were greater than those of the shrimp monoculture, in the two seasons studied.

Research highlights: There was a trend towards greater concentration of nutrients in the water of the monoculture ponds and, lower dissolved oxygen and higher BOD5 in co-culture ponds in the dry season than in the rainy season.

Downloads

Download data is not yet available.

References

Akiyama DM, Anggawati AM, 1998. Growing tilapia with shrimp increased shrimp production, tended to improve pond condition. Aquacult Asia 3 (2): 18-19.

Alam MJ, Islam ML, Tuong TP, 2008. Introducing tilapia (GIFT) with shrimp (Penaeus monodon) in brackish water rice-shrimp system: impact on water quality and production. Bangladesh J 12 (2): 187-195. http://aquaticcommons.org/id/eprint/18918

Alceste CC, Illingworth JA, Jory DE, 2001. Tilapia farming industry in Ecuador. Aquacult Mag 27: 77-82.

APHA, AWWA, WPCF, 1998. Standard method for examination of water and wastewater, 20th Ed, Am Public Health Assoc, Washington DC, USA.

Apún-Molina JP, Santamaría-Miranda A, Luna-González A, Ibarra-Gámez JC, Medina-Alcantar V, Racotta I, 2015. Growth and metabolic responses of whiteleg shrimp Litopenaeus vannamei and Nile tilapia Oreochromis niloticus in polyculture fed with potential probiotic microorganisms on different schedules. Lat Am J Aquat Res 43 (3): 435-445.

Bessa Junior AP, Azevedo CMSB, Pontes FST, Henry-Silva GG, 2012. Polyculture of Nile tilapia and shrimp at different stocking densities. R Bras Zootec 41: 1561-1569. https://doi.org/10.1590/S1516-35982012000700002

Briggs MRP, Funge-Smith SJ, 1994. A nutrient budget of some intensive marine shrimp culture ponds in Thailand. Aquacult Fish Manage 25: 789-811. https://doi.org/10.1111/j.1365-2109.1994.tb00744.x

Brito LO, Simão BR, Neto JBP, Cemirames G, de Azevedo CMSB, 2017. Densidade planctônica do policultivo de Litopenaeus vannamei e Oreochromis niloticus. Ciênc Anim Bras 18: 1-11. https://doi.org/10.1590/1089-6891v18e-16840

Candido AS, Melo APJ, Costa OR, Costa HJMS, Igarashi MA, 2005. Efeito de diferentes densidades na conversão alimentar da tilapia Oreochromis niloticus com o camarão marinho Litopenaeus vannamei em sistema de policultivo. Rev Cienc Agron 36: 279-284. http://www.redalyc.org/articulo.oa?id=195317500005>ISSN 0045-6888

Chiu YN, 1988. Water quality management for intensive prawn ponds. In: Technical considerations for the management and operation of intensive prawn farms; Chiu YN, Sanotos LM, & Juliano RO (Ed.), pp. 102-128. University of the Philippines Aquaculture Society, Iloilo City, Philippines.

Cruz PS, Andalecio MN, Bolivar RB, Fitzsimmons K, 2008. Tilapia-shrimp polyculture in Negros Island, Philippines: a review. J World Aquacult Soc 39: 713-725. https://doi.org/10.1111/j.1749-7345.2008.00207.x

Diana JS, Dettweiler DJ, Lin CK, 1991. Effects of Nile tilapia (Oreochromis niloticus) on the ecosystem of aquaculture ponds, and its significance to the trophic cascade hypothesis in brackish water ponds. Can J Fish Aquat Sci 48: 183-189. https://doi.org/10.1139/f91-025

Fitzsimmons KM, Shahkar E, 2017. Tilapia-shrimp polyculture. In: Tilapia in intensive co-culture, 1st Ed; Perschbacher PW & Stickney RR (Ed.), pp: 94-113. John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118970652.ch7

García, E, 2004. Modificaciones al sistema de clasificación climática de Köppen, 5ª ed. Serie Libros Núm. 6. Instituto de Geografía, Universidad Nacional Autónoma de México, 90 pp, México DF.

Gonzales-Corre K, 1988. Polyculture of the tiger shrimp (Penaeus monodon) with the Nile tilapia (Oreochromis niloticus) in brackish water fish ponds. Proc 2nd Int Symp on Tilapia in Aquaculture; Pullin RSV, Bhukaswan T & Tonguthai K (Ed.), pp: 15-20, Manila, Philippines.

Hernandez-Barraza C, Loredo J, Adame J, Fitzsimmons KM, 2012. Effect of Nile tilapia (Oreochromis niloticus) on the growth performance of Pacific white shrimp (Litopenaeus vannamei) in a sequential polyculture system. Lat Am J Aquat Res 40 (4): 936-942. https://doi.org/10.3856/vol40-issue4-fulltext-10

Hernández-Barraza C, López-Cantú D, Osti JL, Fitzsimmons K, Nelson S, 2013. Productivity of polycultured nile tilapia (Oreochromis niloticus) and pacific white shrimp (Litopenaeus vannamei) in a recirculating system. Isr J Aquacult-Bamid, IJA_65.2013.802.

Ibrahim N, El Naggar G, 2010. Water quality, fish production and economics of Nile tilapia, Oreochromis niloticus and African catfish, Clarias gariepinus monoculture and polycultures. J World Aquacult Soc 41: 574-582. https://doi.org/10.1111/j.1749-7345.2010.00397.x

Jatoba A, Vieira FN, Buglione-Neto CC, Mouriño JLP, Silva BC, Seiftter WQ, Andreatta ER, 2011. Diet supplemented with probiotic for Nile tilapia in polyculture system with marine shrimp. Fish Physiol Biochem 37: 725-732. https://doi.org/10.1007/s10695-011-9472-5

Li D, Dong S, 2002. Summary of studies on closed polyculture of penaeid shrimp with tilapia and molluscans. Oceanol Limnol Sin 33: 90-96.

López-Gómez C, Ponce-Palafox JT, Castillo-Vargasmachuca S, Puga-López D, Castillo-Campo LF, García-Ulloa M, 2017. Evaluation of two mix-cultures of white shrimp (Litopenaeus vannamei) with red tilapia hybrid and spotted rose snapper (Lutjanus guttatus) in intensive indoor brackish water tanks. Lat Am J Aquat Res 45 (5): 922-929. https://doi.org/10.3856/vol45-issue5-fulltext-7

Martínez-Porchas M, Martínez-Córdova LR, Porchas-Cornejo MA, López-Elías JA, 2010. Shrimp polyculture: a potentially profitable, sustainable, but uncommon aquacultural practice. Rev Aquac 2: 73-85. https://doi.org/10.1111/j.1753-5131.2010.01023.x

Midlen A, Redding T, 1998. Environmental management for aquaculture. Aquacultura Series 2, Springer-Verlag, NY, USA.

Ross LG, Mckinney RW, Ross B, 1988. Energy budgets for cultured tilapia. Proc 2nd Int Symp on Tilapia in Aquaculture; Pullin RSV, Bhukaswan T, Tonguthai K & Maclean JL (Ed.), pp: 83-89. ICLARM Conf Proc, Vol. 15, Manila, Philippines.

Ruan J, Rong K, Wang S, Liu Q, 1992. Effect of Nile tilapia on plankton community and primary productivity of freshwater microcosms. Chin J Appl Ecol 4 (1): 65-73.

Ruan J, Liu Q, Wang S, Rong K, 1993. Effect of tilapia on nutrient levels of freshwater microcosms. Chin J Appl Ecol 4 (4): 404-409.

Shahin J, Mondal MN, Wahab MA, Kunda M, 2011. Effects of addition of tilapia in carp‑prawn‑mola polyculture system. J Bangladesh Agril Univ 9: 147‑157. https://doi.org/10.3329/jbau.v9i1.8757

Sharawy ZZ, Thiele R, Abbas EM, El-Magd MA, Hassaan MS, Peter C, Schmidt J, Saborowski R, Goda AMAS, Slater MJ, 2017. Antioxidant response and body composition of whiteleg shrimp co-cultured with Nile tilapia in recirculating aquaculture. Aquacult Env Interac 9: 257-268. https://doi.org/10.3354/aei00229

Shoko AP, Limbu SM, Mrosso HDJ, Mgaya YD, 2014. A comparison of diurnal dynamics of water quality parameters in Nile tilapia (Oreochromis niloticus, Linnaeus, 1758) monoculture and polyculture with African sharp tooth catfish (Clarias gariepinus, Burchell, 1822) in earthen ponds. Int Aq Res 6: 56. https://doi.org/10.1007/s40071-014-0056-8

Simão BR, Brito LO, Maia ASC, Miranda LC, Azevedo CM, 2013. Stocking densities and feeding strategies in shrimp and tilapia polyculture in tanks. Pesq Agropec Bras 48: 1088-1095. https://doi.org/10.1590/S0100-204X2013000800039

Sokal RR, Rohlf FJ, 1995. Biometry: The principles and practice of statistics in biological research, 3rd Ed, W.H. Freeman and Co., NY.

Tendencia EA, De la Peña MR, Fermin AC, Lio-Po G, Chresca JrCH, Inui Y, 2004. Antibacterial activity of tilapia Tilapia hornorum against Vibrio harveyi. Aquaculture 232: 145-152. https://doi.org/10.1016/S0044-8486(03)00531-3

Tendencia EA, Peña RL, Choresca CHJr, 2006. Effect of shrimp biomass and feeding on the anti-Vibrio harveyi activity of Tilapia sp. in a simulated shrimp-tilapia polyculture system. Aquaculture 253: 154-162. https://doi.org/10.1016/j.aquaculture.2005.08.004

Thien CP, Yi Y, Fitzsimmons K, 2004. Effects of adding shrimp Penaeus monodon into intensive culture ponds of Nile tilapia Oreochromis niloticus at different densities. Proc ISTA 6, New dimension in farmed tilapia; Bolivar R, Mair G & Fitzsimmons K (Eds.), pp: 790-805, Manila.

Tian X, Li D, Dong S, Liu G, Qi Z, Lu J, 2001a. Water quality of closed polyculture of penaeid shrimp with tilapia and constricted tagelus. Chin J Appl Ecol 12 (2): 287-292. https://doi.org/10.1016/S0044-8486(01)00559-2

Tian X, Li D, Dong S, Yan X, Qi Z, Liu G, Lu J, 2001b. An experimental study on closed-polyculture of penaeid shrimp with tilapia and constricted tagelus. Aquaculture 202: 57-71. https://doi.org/10.1016/S0044-8486(01)00559-2

Vinyard GL, Drenner RW, Gophen M, Pollingher U, Winkelman DL, Hambright KD, 1988. An experimental study of the plankton community impacts of two omnivorous filter-feeding cichlids, Tilapia galilaea and Tilapia aurea. Can J Fish Aquat Sci 45 (4): 685-690. https://doi.org/10.1139/f88-082

Wang JQ, Li D, Dong S, Wang K, Tian X, 1998. Experimental studies on polyculture in closed shrimp ponds I. Intensive polyculture of Chinese shrimp (Penaeus chinensis) with tilapia hybrids. Aquaculture 163: 11-27. https://doi.org/10.1016/S0044-8486(98)00165-3

Wang M, Lu M, 2016. Tilapia polyculture: a global review. Aquac Res 47 (8): 2363-2374. https://doi.org/10.1111/are.12708

Watanabe WO, Losordo TM, Fitzsimmons K, Hanley F, 2002. Tilapia production systems in the Americas: Technological advances, trends, and challenges. Rev Fish Sci Aquac 10 (3): 465-498. https://doi.org/10.1080/20026491051758

Ye X, Li J, Lu M, Deng G, Jiang X, Tian Y, Quan Y, Jian Q, 2011. Identification and molecular typing of Streptococcus agalactiae isolated from pond-cultured tilapia in China Fish Res 77: 623-632. https://doi.org/10.1007/s12562-011-0365-4

Yi Y, Fitzsimmons K, 2004. Tilapia-shrimp polyculture in Thailand. Proc 6th Int Symp on Tilapia in Aquaculture; Bolivar R, Mair G, & Fitzsimmons K (Ed.), pp: 777-790. ISTA, Manila, Phillippines.

Yi Y, Saelee W, Naditrom P, Fitzsimmons K, 2002. Stocking densities for tilapia-shrimp polyculture in Thailand. 20th Ann Tech Report, Pond dynamics/Aquacult Collabor Res Support Progr, Oregon State Univ, Corvallis, OR, USA.

Yuan D, Yi Y, Yakupitiyage A, Fitzimmons K, Diana JS, 2010. Effects of addition of red tilapia (Oreochromis spp.) at different densities and sizes on production, water quality and nutrient recovery of intensive culture of white shrimp (Litopenaeus vannamei) in cement tanks. Aquaculture 298: 226-238. https://doi.org/10.1016/j.aquaculture.2009.11.011

Zhang H, Li D, Wang Y, 1999. The impacts of tilapia polyculture in shrimp ponds on the structure of plankton communities. J Fish Aquat Sci 6 (4): 114-116.

Published
2019-11-08
How to Cite
Juárez-Rosales, J., Ponce-Palafox, J. T., Román-Gutierrez, A. D., Otazo-Sánchez, E. M., Pulido-Flores, G., & Castillo-Vargasmachuca, S. G. (2019). Effects of white shrimp (Litopenaeus vannamei) and tilapia nilotica (Oreochromis niloticus var. Spring) in monoculture and co-culture systems on water quality variables and production in brackish low-salinity water earthen ponds during rainy and dry seasons. Spanish Journal of Agricultural Research, 17(3), e0605. https://doi.org/10.5424/sjar/2019173-14938
Section
Animal production