Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil

  • Daniel Chico Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid. C/ Senda del Rey 13. 28040 Madrid Observatorio del agua, Fundación Botín
  • Antonio D. Santiago Embrapa Coastal Tablelands, Av. Beira Mar, 3250. 13 de Julho, Caixa Postal 44, Sergipe
  • Alberto Garrido Centro de Estudios e Investigación para la Gestión de Riesgos Agrarios y Medioambientales (CEIGRAM), Universidad Politécnica de Madrid. C/ Senda del Rey 13. 28040 Madrid Observatorio del agua, Fundación Botín
Keywords: biofuel, water productivity, blue water, green water

Abstract

Ethanol production in Brazil has grown by 219% between 2001 and 2012, increasing the use of land and water resources. In the semi-arid north-eastern Brazil, irrigation is the main way for improving sugarcane production. This study aimed at quantifying water consumed in ethanol production from sugarcane in this region using the water footprint (WF) indicator and complementing it with an evaluation of the water apparent productivity (WAP). This way we were able to provide a measure of the crop´s physical and economic water productivity using, respectively, the WF and WAP concepts. We studied sugarcane cultivation under nine different water regimes, including rainfed and full irrigation. Data from a mill of the state of Alagoas for three production seasons were used. Irrigation influenced sugarcane yield increasing total profit per hectare and economic water productivity. Full irrigation showed the lowest WF, 1229 litres of water per litre of ethanol (L/L), whereas rainfed production showed the highest WF, 1646 L/L. However, the lower WF in full irrigation as compared to the rest of the water regimes implied the use of higher volumes of blue water per cultivated hectare. Lower water regimes yielded the lowest economic productivity, 0.72 US$/m3 for rainfed production as compared to 1.11 US$/m3 for full irrigation. Since economic revenues are increased with higher water regimes, there are incentives for the development of these higher water regimes. This will lead to higher general crop water and economic productivity at field level, as green water is replaced by blue water consumption.

Downloads

Download data is not yet available.

References

Almeida BADL, Barreto GFB, Gonçalves CMN, 2007. Resíduos da agroindustria canavieira no Estado de Minas Gerais: usos e conservação ambiental. Informe Agropecuário 28: 96-100.

ANA, 2009. Manual de conservação e reúso de águia na agroindustria sucoroenergética. Agência Nacional de Águas; Federaçao das Industrias do Estado de Sao Paulo; União das Indústria da Cana-de-Açúcar; Centro de Tecnologia Canavieira, Brasília.

ANA, 2011. Conjuntura dos recursos hídricos no Brasil. Informe 2011. Agência Nacional de Águas, Brasília. II, 112 pp.

Andrade junior AS, Bastos EA, Aguiar Neto AO, Braga DL, Silva ME, Noleto DH, 2012. Agricultural waterfootprint of ethanol and sugar from sugarcane under fertigation production system. Proc XVIII World Congr, Int Commiss Agric Biosyst Eng (CIGR), Valencia, Spain [CD-ROM].

Bajay SV, Ferreira AL, 2005. A energia da biomassa no Brasil. In: Uso da biomassa para produção de energia na indústria brasileira (Rosilho-Calle F, Bajay SV, Rothman H, eds). Editora Unicamp, Campinas. Cap. 2, pp: 68-120.

Buarque DC, Pedrosa VA, Carvalho GSC, Freire CC, 2003. Critérios de demandas hídricas para a outorga de uso da água: setor sucro-alcooleiro. XV Simpósio Brasileiro de Recursos Hídricos, Curitiba/PR. Anais XV Simpósio Brasileiro de Recursos Hídricos. São Paulo.

CCEE, 2012. Estadisticas de preço de liquidação das diferenças da energia electrica. Câmara de Comercialização de Energia Elétrica. Available in http://ccee.org.br. [March, 2013].

CEPEA/USP, 2015. Indicador dos preços de açúcar e álcool. Centro de Estudos Avançados em Economia Aplicada. Available at: www.cepea.esalq.usp.br. [March 2015].

CPRM, 2005. Diagnostico do Município de Senador Teotônio Vilela, Estado de Alagoas. Serviço Geológico do Brasil. Available in http://www.cprm.gov.br/rehi/atlas/alagoas/relatorios/TEVI101.pdf

EPA, 2007. Energy independence and security act H.R.6. Available in www.gpo.gov/fdsys/pkg/BILLS-110hr6enr/pdf/BILLS-110hr6enr.pdf. [September 2013].

FAO, 2008. Bioenergy, food security and sustainability. Towards an international framework. High-Level Conference on Word Food Security: The Challenges of Climate Change and Bioenergy, 3-5 June. Food and Agriculture Organization, Rome.

FAO, 2009. CROPWAT 8.0 model. Food and Agriculture Organization, Rome. Available in www.fao.org/nr/water/inforesinforesdatabasescropwat.html. [September 2013].

FAO, 2013. Biofuels and food security: A report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security. Food and Agriculture Organization, Rome.

Farias CHA, Fernandes P, Dantas Neto J, Gheyi H, 2008. Eficiência no usa da água na cana de açúcar sob diferentes laminas de irrigação e níveis de zinco no litoral norte paraibano. Eng Agríc Jaboticabal 28 (3): 494-506.

Furtado AT, Scandiffio MIG, Cortez LAB, 2011. The Brazilian sugarcane innovation system. Energy Policy 39: 156–166. http://dx.doi.org/10.1016/j.enpol.2010.09.023

Gerbeens-Leenes W, Hoekstra AY, van der Meer TH, 2009. The water footprint of bioenergy. P Nat Acad Sci USA 106 (25): 10219-10223. http://dx.doi.org/10.1073/pnas.0812619106

Gerbeens-Leenes W, Hoekstra AY, 2012.The water footprint of sweeteners and bio-ethanol. Environ Int 40: 202-211. http://dx.doi.org/10.1016/j.envint.2011.06.006

Hess T, 2010. Estimating green water footprints in a temperate environment. Water 2: 351-362. http://dx.doi.org/10.3390/w2030351

Hoekstra AY, Chapagain AK, 2007. Water footprints of nations: Water use by people as a function of their consumption pattern. Water Resour Manage 21: 35–48. http://dx.doi.org/10.1007/s11269-006-9039-x

Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM, 2011. The water footprint assessment manual: Setting the global standard. Earthscan, London, Washington.

Hughes S, Partzsch L, Gaskell J, 2007. The development of biofuels within the context of the global water crisis. Sust Develop Law Policy 7 (22): 58-62.

IBGE, 2013. Banco de dados agregados. Instituto Brasilero de Geografia e Estadística. Available in www.sidra.ibge.gov.br/bda/agric/default.asp?z=t&o=11&i=P. [September 2013].

Jacomine PKT, 2001. Evolução do conhecimento sobre solos coesos do Brasil. Workshop Coesão em Solos dos Tabuleiros Costeiros (Cintra FLD, Anjos JL, Ivo WMP, eds). Aracaju, pp: 21-35.

Martinelli LA, Filoso S, 2008. Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18 (4): 885–898. http://dx.doi.org/10.1890/07-1813.1

Maschio R, 2011. Produtividade de agua em biomassa e energía para 24 variedades de cana de açucar. MsC. Thesis. Escola Superior de Agricultura Luiz de Queiroz. Piracicaba. Available in www.teses.usp.br/teses/disponiveis/11/11143/tde-19092011-103249/pt-br.php. [November 2014].

Mello Ivo WMP, Rossetto R, Santiago AD, Barbosa GVS, Vasconcelos JN, 2008. Impulsionando a produção e a produtividade da cana-de-açúcar no Brasil. In: Desenvolvimento da Agricultura Tropical (Albuquerque ACS; da Silva AG, orgs.). Embrapa, Brasília. Vol. 1, pp: 670-716.

Meloni A, Rudor BFT, Barcellos L, Alves D, Rumenos M, Adami, 2008. Prospects of the sugarcane expansion in Brazil: impacts on direct and indirect land use changes. In: Sugarcane ethanol: contributions to climate change mitigation and the environment (Zuurbier P & Van de Vooren J, eds). Wageningen Acad Publ,Wageningen, The Netherlands.

Resende AN, 2011. Sustentabilidade, água virtual e pegada hídrica: um estudo exploratório no setor bioenergético. Dissetaçao (Mestrado em Engenharia de Produçao). Sistema de Qualidade, UFRGS, Porto Alegre, RS.

SEMARH, 2010. Plano estadual de recursos hídricos do estado de Alagoas. Secretaría de Meio Ambiente y Recursos Hidricos. Available in www.semarh.al.gov.br/recursos-hidricos. [November 2014].

Silva MAS, Griebeler N, Borges LC, 2007. Uso de vinhaça e impactos nas propiedades do solo e lençol freático. Revista Brasileira de Engenharia Agrícola e Ambiental 11 (1): 108-114. http://dx.doi.org/10.1590/S1415-43662007000100014

SINDACUCAR-AL, 2015. Área Canavieira, Sindicato da industria do açúcar e do álcool no estado de Alagoas. Available at: www.sindacucar-AL.com.br. [March 2015].

ÚNICA, 2013. Uniao da agroindústria canaviera do estado de São Paulo. Available in www.unica.com.br. [September 2013].

Vasconcelos JN, Rossetto R, Mello Ivo WMP, Santiago AD, Barbosa GVS, 2008. Impulsionando a produção e a produtividade da indústria sucroalcooleira. In: Desenvolvimento da Agricultura Tropical (Albuquerque ACS; da Silva AG, orgs.). Embrapa, Brasília. Vol. 1, pp: 717-733.

Veloso Leal D, 2012. Evapotranspiraçao de cana de açúcar e fotossíntese acumulada em biomassa e energia, para diferentes variedades, disponibilidades hídricas no solo e ciclos de cultivo. MsC. Thesis. Escola Superior de Agricultura Luiz de Queiroz. Piracicaba. Available in www.teses.usp.br/teses/disponiveis/11/11152/tde-17082012-085611/pt-br.php.

Published
2015-05-29
How to Cite
Chico, D., Santiago, A. D., & Garrido, A. (2015). Increasing efficiency in ethanol production: Water footprint and economic productivity of sugarcane ethanol under nine different water regimes in north-eastern Brazil. Spanish Journal of Agricultural Research, 13(2), e1203. https://doi.org/10.5424/sjar/2015132-6057
Section
Water management