The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage

Keywords: cocksfoot, ensiling, feeding value, forage preservation, grass varieties, mini-silo, fermentation quality

Abstract

This study was carried out to determine the chemical composition, silage quality and ensilability of ten cocksfoot cultivars using biological and chemical silage additives. The plant material was harvested from the first and second cut, cultivated at the Research Station of Fodder Crops in Vatín, Czech Republic. Wilted forage was chopped and ensiled in mini-silos with 3 replicates per treatment. The treatments were: 1) without additives, used as a control; 2) with bacterial inoculants; and 3) with chemical preservatives. The results indicated that the year factor (2012-2013) influenced significantly the chemical composition of the silage in both cuts. The use of biological inoculants reduced the content of crude fibre and acid detergent fibre; but it did not influence the content of neutral detergent fibre, in comparison with the control silage in both cuts. Furthermore, the application of biological inoculants reduced the concentration of lactic acid (LA) and acetic acid (AA) in contrast to the control silage in the first cut. Moreover, in the second cut the same values tended to be the opposite. Interestingly, ‘Amera’ was the unique variety that presented a high concentration of butyric acid (0.2%) in comparison with other varieties in the first cut. In conclusion, the biological inoculants had a favourable effect on silage fermentation. Notably, only ‘Greenly’ and ‘Starly’ varieties from the first cut; and ‘Greenly’, ‘Sw-Luxor’, and ‘Otello’ varieties from the second cut were appropriate for ensiling because their pH-values; LA and AA concentrations were ideal according to the parameters of the fermentation process.

Downloads

Download data is not yet available.

References

AOAC, 1980. Official methods of analysis, 13th ed. Association of Official Analytical Chemists, Washington, DC, USA. 1040 pp.

Bolsen KK, Ashbell G, Wilkinson JM, 1995. Silage additives. In: Biotechnology in animal feeds and feeding; Wallace RJ, Chesson A (eds.). pp: 33-54. VCH Press, Weinheim. http://dx.doi.org/10.1002/9783527615353.ch3

Charmley E, 2001. Towards improved silage quality – A review. Can J Anim Sci 81(2): 157-168. http://dx.doi.org/10.4141/A00-066

Cherney DRJ, Alessi MA, Cherney JH, 2006. Influence of grass species and sample preparation on ensiling characteristics. Crop Sci 46(1): 256-263. http://dx.doi.org/10.2135/cropsci2005.04-0032

Coblentz WK, Muck RE, 2012. Effects of natural and simulated rainfall on indicators of ensilability and nutritive value for wilting alfalfa forages sampled before preservation as silage. J Dairy Sci 95(11): 6635-6653. http://dx.doi.org/10.3168/jds.2012-5672

ČSN 467092 Standards (1997). Testing method for feeding stuffs. Praha, CZ. [In Czech].

DaMatta FM, Grandis A, Arenque BC, Buckeridge MS, 2010. Impacts of climate changes on crop physiology and food quality. Food Res Int 43 (7): 1814-1823. http://dx.doi.org/10.1016/j.foodres.2009.11.001

Danner H, Holzer M, Mayrhuber E, Braun R, 2003. Acetic acid increases stability of silage under aerobic conditions. Appl Environ Microbiol 69(1): 562-567. http://dx.doi.org/10.1128/AEM.69.1.562-567.2003

Doležal P, 2002. Vliv přídavku Lactobacillus plantarum DSM 12771 na kvalitu siláží silně zavadlé vojtěšky a trávy. Acta Univ Agric et Silvic Mend Brun 51: 37-44.

Doležal P, Zeman L, Skládanka J, 2008. Effect of supplementation of chemical preservative on fermentation process of lupine silage. Slovak J Anim Sci 41 (1): 30-38.

Doležal P, Dvořáček J, Loučka R, Mikyska F, Mudřík Z, Opitz von Boberfeld W, Prokeš K, Příkryl J, Skládanka J, Straková E, et al., 2012. Konzervace krmiv a jejich využití ve výživě zvířat. Baštan, Olomouc, CZ. 307 pp.

Driehuis F, Oude Elferink SJWH, Van Wikselaar PG, 2001. Fermentation characteristics and aerobic stability of grass silage inoculated with Lactobacillus buchneri with or without homofermentative LAB. Grass Forage Sci 56(4): 330-343. http://dx.doi.org/10.1046/j.1365-2494.2001.00282.x

Filya I, Muck R, Contreras-Govea F, 2007. Inoculant effects on alfalfa silage: fermentation products and nutritive value. J Dairy Sci 90(11): 5108-5114. http://dx.doi.org/10.3168/jds.2006-877

Glamočlija Đ, Janković S, Rakić S, Maletić R, Ikanović J, Lakić Ž, 2011. Effects of nitrogen and harvesting time on chemical composition of biomass of sudan grass, fodder sorghum, and their hybrid. Turk J Agric For 35(2): 127-138.

Hatfield J, Boote K, Fay P, Hahn L, Izaurralde C, Kimball BA, Mader T, Morgan J, Ort D, Polley D, Thomson A, Wolfe D, 2008. Agriculture. In: The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States; Backlund P, Janetos A, Schimel D (eds.). pp: 22-74. U.S. Climate Change Science Program, Washington, DC.

Heimann M, Reichstein M, 2008. Terrestrial ecosystem carbon dynamics and climate feedbacks. Nature 451(176): 289-292. http://dx.doi.org/10.1038/nature06591

Huhtanen P, Rinne M, Nousiainen JI, 2007. Evaluation of the factors affecting silage intake of dairy cows: a revision of the relative silage dry matter intake index. Animal 1 (5): 758-770. http://dx.doi.org/10.1017/S175173110773673X

Jalč D, Lauková A, Simonová M, Varadyová Z, Homolka P, 2009. The use of bacterial inoculants for grass silage: their effects on nutrient composition and fermentation parameters in grass silages. Czech J Anim Sci 54(2): 84-91.

Jennings JA, 2010. Rainfall effects on wilting forages. Agriculture and Natural Resources. Univ. Arkansas, Div. Agric. FSA3090, 8 pp. https://www.uaex.edu/publications/pdf/FSA-3090.pdf.

Kalaugher E, Bornman JF, Clark A, Beukes P, 2013. An integrated biophysical and socio-economic framework for analysis of climate change adaptation strategies: the case of a New Zealand dairy farming system. Environ Modell Softw 39: 176-187. http://dx.doi.org/10.1016/j.envsoft.2012.03.018

Khaing KT, Loh TC, Ghizan S, Halim RA, Samsudin AA, 2014. Effect of different particle lengths on the bacterial population, fermentation profiles and nutritive value of whole maize plant silage. Livest Res Rural Dev 26: 197. http://www.lrrd.org/lrrd26/11/khai26197.html.

Kleinschmit DH, Kung L Jr, 2006a. The effects of Lactobacillus buchneri 40788 and Pediococcus pentosaceus R1094 on the fermentation of corn silage. J Dairy Sci 89 (10): 3999-4004. http://dx.doi.org/10.3168/jds.S0022-0302(06)72443-2

Kleinschmit DH, Kung L Jr, 2006b. A meta-analysis of the effects of Lactobacillus buchneri on the fermentation and aerobic stability of corn and grass and small-grain silages. J Dairy Sci 89 (10): 4005-4013. http://dx.doi.org/10.3168/jds.S0022-0302(06)72444-4

Kramer W, 2002. Neue entwicklungen und strategien im bereich der silierzusätze. Preconf 8 Alpenländisches Expertenforum, Bundsanstalt für Alpenländische Landwirtschaft, Gumpenstein (Austria), Apr 9-10. pp: 27-30.

Krizsan SJ, Randby ǺT, Westad F, 2012. Effect of acetic acid, caproic acid and tryptamine on voluntary intake of grass silage by growing cattle. Grass Forage Sci 67 (3): 361-368. http://dx.doi.org/10.1111/j.1365-2494.2012.00852.x

Kung L Jr, Ranjit NK, 2001. The effect of Lactobacillus buchneri and other additives on the fermentation and aerobic stability of barley silage. J Dairy Sci 84(5): 1149-1155. http://dx.doi.org/10.3168/jds.S0022-0302(01)74575-4

Kung L Jr, Stokes MR, Lin CJ, 2003. Silage additives. In: Silage science and technology; Buxton DR, Muck RR, Harrison JH (eds.). pp: 305-360. Am Soc Agron, Madison, WI, USA.

Li Y, Nishino N, 2011. Bacterial and fungal communities of wilted Italian ryegrass silage inoculated with and without Lactobacillus rhamnosus or Lactobacillus buchneri. Lett Appl Microbiol 52 (4): 314-321. http://dx.doi.org/10.1111/j.1472-765X.2010.03000.x

Lindner R, Lema M, Garcia A, 2004. Extended genetic resources of Dactylis glomerata ssp. izcoi in Galicia (Northwest Spain). Genet Resour Crop Evol 51 (4): 437-442. http://dx.doi.org/10.1023/B:GRES.0000023457.30193.63

Martínez-Fernández A, Soldado A, Vicente F, Martínez A, de la Roza-Delgado B, 2010. Wilting and inoculation of Lactobacillus buchneri on intercropped triticale-fava silage: effects on nutritive, fermentative and aerobic stability characteristics. Agr Food Sci 19(4): 302-312. http://dx.doi.org/10.2137/145960610794197597

McDonald P, Edwards RA, Greenhalgh JFD, Morgan CA, 2002. Animal nutrition. Prentice Hall, NJ, USA. 693 pp.

McDonald P, Greenhalgh JFD, Morgan CA, Edwards R, Sinclair L, Wilkinson R, 2010. Animal nutrition. Pearson Education Limited, Harlow, UK. 714 pp.

Merry RJ, Jones R, Theodorou MK, 2000. The conservation of grass. In: Grass: its production and utilization; Hopkins A (ed.). pp: 196-228. Blackwell Sci. Ltd., Oxford, UK.

Míka V, Kohoutek A, Odstrčilová V, 2002. Characteristics of important diploid and tetraploid subspecies of Dactylis from point of view of the forage crop production. Rostlinná Výroba 48 (6): 243-248.

Mohammadzadeh H, Khorvash M, Ghorbani GR, Yang WZ, 2012. Frosted corn silage with or without bacterial inoculants in dairy cattle ration. Livest Sci 145(1-3): 153-159. http://dx.doi.org/10.1016/j.livsci.2012.01.011

Murillo M, Herrera E, Carrete FO, Ruiz O, Serrato JS, 2012. Chemical composition, in vitro gas production, ruminal fermentation and degradation patterns of diets by grazing steers in native range of North Mexico. Asian-Aust J Anim Sci 25 (10): 1395-1403. http://dx.doi.org/10.5713/ajas.2012.12281

Oetzel GR, 2007. Herd level ketosis – diagnosis and risk factors. Preconf 7C on Dairy Herd Problem Investigation Strategies: Transition Cow Troubleshooting, Vancouver (Canada), Sept 19. pp: 61-91.

Ohmomo S, Tanaka O, Kitamoto HK, Cai Y, 2002. Silage and microbial performance, old story but new problems. Jpn Agr Res Q 36(2): 59-71. http://dx.doi.org/10.6090/jarq.36.59

Pozdíšek J, Loučka R, Machačová E, 2003. Digestibility and nutrition value of grass silages. Czech J Anim Sci 48 (9): 359-364.

Ramirez-Lozano R, 2015. Grass nutrition. Palibrio, Nuevo León, Mexico. 347 pp.

Sanada Y, Gras M Ch, van Santen E, 2010. Cocksfoot. In: Fodder crops and amenity grasses; Boller B, Posselt UK, Veronesi F (eds.). pp: 317-328. Springer, New York. http://dx.doi.org/10.1007/978-1-4419-0760-8_13

Sanderson MA, Skinner RH, Elwinger GF, 2002. Seedling development and field performance of prairiegrass, grazing bromegrass, and orchardgrass. Crop Sci 42(1): 224-230. http://dx.doi.org/10.2135/cropsci2002.0224

Sariçiçek ZB, Kiliç Ü, 2009. The effects of different additives on silage gas production, fermentation kinetics and silage quality. Ozean J Appl Sci 2(1): 11-18.

Scarbrough DA, Coblentz WK, Humphry JB, Coffey KP, Daniel TC, Sauer TJ, Jennings JA, Turner JE, Kellogg DW, 2005. Evaluation of dry matter loss, nutritive value, and in situ dry matter disappearance for wilting orchardgrass and bermudagrass forages damaged by simulated rainfall. Agron J 97(2): 604-614. http://dx.doi.org/10.2134/agronj2005.0604

Skládanka J, Nedělník J, Doležal P, Lindušková H, Nawrath A, 2012. Influence of forage species and preservation additives on quality and mycotoxins safety of silages. Acta Fytotechnica et Zootechnica. 15: 50-54.

Vandenbergh PA, 1993. Lactic acid bacteria, their metabolic products and interference with microbial growth. FEMS Microbiol Rev 12 (1-3): 221-238. http://dx.doi.org/10.1111/j.1574-6976.1993.tb00020.x

Váradyová Z, Jalč D, Lauková A, Mihaliková K, Homolka P, 2013. Effects of microbial inoculants Enterococcus faecium EF2/3s and EF26/42 on microbial, chemical, and fermentation parameters in grass silage. Turk J Agric For 37(3): 344-351.

Vlková E, Rada V, Bunešová V, Ročková Š, 2012. Growth and survival of lactic acid bacteria in lucerne silage. Folia Microbiol 57(4): 359-362. http://dx.doi.org/10.1007/s12223-012-0142-5

Weinberg ZG, 2008. Preservation of forage crops by solid-state lactic acid fermentation-ensiling. In: Current developments in solid-state fermentation; Pandey A, Soccol CR, Larroche C (eds.). pp: 443-467. Springer, Berlin. http://dx.doi.org/10.1007/978-0-387-75213-6_19

Weinberg ZG, Muck RE, Weimer PJ, Chen Y, Gamburg M, 2004. Lactic acid bacteria used in inoculants for silage as probiotics for ruminants. Appl Biochem Biotechnol 118(1-3): 1-9. http://dx.doi.org/10.1385/ABAB:118:1-3:001

Xu Y, Ding Z, 2011. Physiological, biochemical and histopathological effects of fermentative acidosis in ruminant production: a minimal review. Span J Agric Res 9 (2): 414-422. http://dx.doi.org/10.5424/sjar/20110902-177-10

Xu ZZ, Zhou GS, 2006. Combined effects of water stress and high temperature on photosynthesis, nitrogen metabolism and lipid peroxidation of a perennial grass Leymus chinensis. Planta 224(5): 1080-1090. http://dx.doi.org/10.1007/s00425-006-0281-5

Yakushev P, 2009. Risk analysis as the basis for evaluating the consequences of climate changes in agriculture. Russ Agric Sci 35(5): 355-358. http://dx.doi.org/10.3103/S1068367409050206

Zahiroddini H, Baah J, Absalom W, Mcallister TA, 2004. Effect of an inoculant and hydrolytic enzymes on fermentation and nutritive value of whole crop barely silage. Anim Feed Sci Technol 117(3-4): 317-330. http://dx.doi.org/10.1016/j.anifeedsci.2004.08.013

Published
2016-06-01
How to Cite
Alba-Mejía, J. E., Skládanka, J., Hilgert-Delgado, A., Klíma, M., Knot, P., Doležal, P., & Horký, P. (2016). The effect of biological and chemical additives on the chemical composition and fermentation process of Dactylis glomerata silage. Spanish Journal of Agricultural Research, 14(2), e0604. https://doi.org/10.5424/sjar/2016142-8040
Section
Animal production