Agronomic and molecular evaluation of maize inbred lines for drought tolerance

  • Sanja Mikić Institute of Field and Vegetable Crops, Novi Sad
  • Miroslav Zorić Institute of Field and Vegetable Crops, Novi Sad
  • Dušan Stanisavljević Institute of Field and Vegetable Crops, Novi Sad
  • Ankica Kondić-Špika Institute of Field and Vegetable Crops, Novi Sad
  • Ljiljana Brbaklić Biogranum, Novi Sad
  • Borislav Kobiljski Biogranum, Novi Sad
  • Aleksandra Nastasić Institute of Field and Vegetable Crops, Novi Sad
  • Bojan Mitrović Institute of Field and Vegetable Crops, Novi Sad
  • Gordana Šurlan-Momirović University in Belgrade, Faculty of Agriculture
Keywords: anthesis silk interval, inbreds, microsatellites, yield, Zea mays

Abstract

Drought is a severe threat to maize yield stability in Serbia and other temperate Southeast European countries occurring occasionally but with significant yield losses. The development of resilient genotypes that perform well under drought is one of the main focuses of maize breeding programmes. To test the tolerance of newly developed elite maize inbred lines to drought stress, field trials for grain yield performance and anthesis silk interval (ASI) were set in drought stressed environments in 2011 and 2012. Inbred lines performing well under drought, clustered into a group with short ASI and a smaller group with long ASI, were considered as a potential source for tolerance. The former contained inbreds from different heterotic groups and with a proportion of local germplasm. The latter consisted of genotypes with mixed exotic and Lancaster germplasm, which performed better in more drought-affected environments. Three inbreds were selected for their potential drought tolerance, showing an above-average yield and small ASI in all environments. Association analysis indicated significant correlations between ASI and grain yield and three microsatellites (bnlg1525, bnlg238 and umc1025). Eight alleles were selected for their favourable concurrent effect on yield increase and ASI decrease. The proportion of phenotypic variation explained by the markers varied across environments from 5.7% to 22.4% and from 4.6% to 8.1% for ASI and yield, respectively. The alleles with strongest effect on performance of particular genotypes and their interactions in specific environments were identified by the mean of partial least square interactions analysis indicating potential suitability of the makers for tolerant genotype selection.

Downloads

Download data is not yet available.

References

Aastveit AH, Martens H, 1986. ANOVA interactions interpreted by partial least squares regression. Bioinf 42: 829-844. http://dx.doi.org/10.2307/2530697

Almeida GD, Nair S, Borem A, Cairns J, Trachsel S, Ribaut JM, Banziger M, Prasanna BM, Crossa J, Babu R, 2014. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. Mol Breed 34: 701-715. http://dx.doi.org/10.1007/s11032-014-0068-5

Araus OJL, Serret MMD, Edmeades GO, 2012. Phenotyping maize for adaptation to drought. Front Physiol 3: 1-20. http://dx.doi.org/10.3389/fphys.2012.00305

Aylor DE, 2003. Rate of dehydration of corn (Zea mays L.) pollen in the air. J Exp Bot 54: 2307-2312. http://dx.doi.org/10.1093/jxb/erg242

Babic V, Vancetovic J, Prodanovic S, Andjelkovic V, Babic M, Kravic N, 2012. The identification of drought tolerant maize accessions by two-step cluster analysis. Rom Agric Res 29: 53-61.

Blum A, 2005. Drought resistance, water-use efficiency, and yield potential - Are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56: 1159-1168. http://dx.doi.org/10.1071/AR05069

Bolanos J, Edmeades GO, 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res 48: 65-80. http://dx.doi.org/10.1016/0378-4290(96)00036-6

Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES, 2007. TASSEL: software for association mapping of complex traits in diverse samples. Bioinf 23: 2633-2635. http://dx.doi.org/10.1093/bioinformatics/btm308

Bruce WB, Edmeades GO, Barker TC, 2002. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 53: 13-25. http://dx.doi.org/10.1093/jexbot/53.366.13

Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, et al., 2009. The genetic architecture of maize flowering time. Science 325: 714-718. http://dx.doi.org/10.1126/science.1174276

Butron A, Velasco P, Ordas A, Malvar RA, 2004. Yield evaluation of maize cultivars across environments with different levels of pink stem borer infestation. Crop Sci 44: 741-747. http://dx.doi.org/10.2135/cropsci2004.7410

Cairns JE, Crossa J, Zaidi PH, Grudloyma P, Sanchez C, Araus JL, Thaitad S, Makumbie D, Magorokoshoa C, Bänzigerb M et al., 2013. Identification of drought, heat, and combined drought and heat tolerant donors in maize. Crop Sci 53: 1335-1346. http://dx.doi.org/10.2135/cropsci2012.09.0545

Cattivelli L, Rizza F, Badeck FW, Mazzucotelli E, Mastrangelo AM, Francia E, Mare C, Tondelli A, Stanca AM, 2008. Drought tolerance improvement in crop plants: an integrated view from breeding to genomics. Field Crop Res 105: 1-14. http://dx.doi.org/10.1016/j.fcr.2007.07.004

Crossa J, Vargas M, van Eeuwijk FA, Jiang C, Edmeades GO, Hoisington D, 1999. Interpreting genotype × environment interaction in tropical maize using linked molecular markers and environmental covariables. Theor Appl Genet 99: 611-625. http://dx.doi.org/10.1007/s001220051276

Edmeades GO, Bolanos J, Elings A, Ribaut JM, Banziger M, Westgate ME, 2000. The role and regulation of the anthesis silking interval in maize. In: Physiology and modeling kernel set in maize; Westgate ME, Boote K (eds). pp: 43-73. Crop Sci Soc Am, Madison, WI, USA.

Evanno G, Regnaut S, Goudet J, 2005. Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14: 2611-2620. http://dx.doi.org/10.1111/j.1365-294X.2005.02553.x

Federer WT, Crossa J, 2012. I.4 Screening experimental designs for quantitative trait loci, association mapping, genotype-by environment interaction, and other investigations. Front Physiol 3: 156. http://dx.doi.org/10.3389/fphys.2012.00156

Flint-Garcia SA, Thuillet AC, Yu J, Pressoir G, Romero SM, Mitchell SE, Doebley J, Kresovich S, Goodman MM, Buckler ES, 2005. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J 44: 1054-1064. http://dx.doi.org/10.1111/j.1365-313X.2005.02591.x

Frey FP, Presterl T, Lecoq P, Orlik A, Stich B, 2016. First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations. Theor Appl Gen 17: 1-7. http://dx.doi.org/10.1007/s00122-016-2674-6

Hervé P, Serraj R, 2009. Gene technology and drought: A simple solution for a complex trait? Afr J Biotechnol 8: 1740-1749.

Holland JB, 2007. Genetic architecture of complex traits in plants. Curr Opin Plant Biol 10: 156-161. http://dx.doi.org/10.1016/j.pbi.2007.01.003

Ivanović M, Čapelja V, Radojčić S, Popov R, Nastasić A. 2008. Kukuruz u 2007. godini: pouke sušne godine. Ratar Povrt. 45: 1-65. [in Serbian].

Khodarahmpour Z, 2012. Morphological classification of maize (Zea mays L.) genotypes in heat stress condition. J Agric Sci 4: 31-40. http://dx.doi.org/10.5539/jas.v4n5p31

Kresovic B, Matovic G, Gregoric E, Djuricin S, Bodroza D, 2014. Irrigation as a climate change impact mitigation measure: An agronomic and economic assessment of maize production in Serbia. Agric Water Manage 139: 7-16. http://dx.doi.org/10.1016/j.agwat.2014.03.006

Li M, Guo X, Zhang M, Wang X, Zhang G, Tian Y, Wang Z, 2010. Mapping QTLs for grain yield and yield components under high and low phosphorus treatments in maize (Zea mays L.). Plant Sci 178: 454-462. http://dx.doi.org/10.1016/j.plantsci.2010.02.019

Lima MLA, Souza CL, Bento DAV, Souza AP, Carlini-Garcia LA, 2006. Mapping QTL for grain yield and plant traits in a tropical maize population. Mol Breed 17: 227-239. http://dx.doi.org/10.1007/s11032-005-5679-4

Liu ZH, Xie HL, Tian GW, Chen SJ, Wang CL, Hu YM, Tang JH, 2008. QTL mapping of nutrient components in maize kernels under low nitrogen conditions. Plant Breed 127: 279-285. http://dx.doi.org/10.1111/j.1439-0523.2007.01465.x

Liu Y, Subhash C, Yan J, Song C, Zhao J, Li J, 2011. Maize leaf temperature responses to drought: Thermal imaging and quantitative trait loci (QTL) mapping. Environ Exp Bot 71: 158-165. http://dx.doi.org/10.1016/j.envexpbot.2010.11.010

Maccaferri M, Sanguineti MC, Demontis A, El-Ahmed A, del Moral LG, Maalouf F, Nachit M, Nserallah N, Ouabbou H, Rhouma S, et al., 2011. Association mapping in durum wheat grown across a broad range of water regimes. J Exp Bot 62: 409-438. http://dx.doi.org/10.1093/jxb/erq287

Malvar RA, Revilla P, Butron A, Gouesnard B, Boyat A, Soengas P, Alvarez A, Ordas A, 2005. Performance of crosses among French and Spanish maize populations across environments. Crop Sci 45: 1052-1057. http://dx.doi.org/10.2135/cropsci2004.0301

Marković K, Nikolić A, Ignjatović-Micić D, Anđelković V, Lazić-Jančić V, 2008. S1 families as a source of beneficial alleles for breeding drought tolerant maize genotypes. Genetika 40: 83-93. http://dx.doi.org/10.2298/GENSR0801083M

Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut JM, 2009. Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119: 913-930. http://dx.doi.org/10.1007/s00122-009-1099-x

Messmer R, Fracheboud Y, Banziger M, Stamp P, Ribaut JM, 2011. Drought stress and tropical maize: QTL for leaf greenness, plant senescence, and root capacitance. Field Crop Res 124: 93-103. http://dx.doi.org/10.1016/j.fcr.2011.06.010

Mir RR, Zaman-Allah M, Sreenivasulvu N, Trethowan R, Varshney RK, 2012. Intregrated genomics, physiology, and breeding approaches for improving drought tolerance in crops. Theor Appl Genet 125: 625-645. http://dx.doi.org/10.1007/s00122-012-1904-9

Mitrović B, Stanisavljević D, Treskić S, Stojaković M, Bekavac G, Nastasić A, Ivanović M, 2011. GGE biplot analysis of multi-environment trials of NS maize hybrids. Ratar Povrt 48: 77-82. http://dx.doi.org/10.5937/ratpov1101077M

Monneveux P, Sanchez C, Beck D, Edmeades GO, 2006. Drought tolerance improvement in tropical maize source populations. Crop Sci 46: 180-19. http://dx.doi.org/10.2135/cropsci2005.04-0034

Monneveux P, Sanchez C, Tiessen A, 2008. Future progress in drought tolerance in maize needs new secondary traits and cross combinations. J Agric Sci 146: 287-300. http://dx.doi.org/10.1017/S0021859608007818

Poland JA, Bradbury PJ, Buckler ES, Nelson RJ, 2011. Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci USA 108: 6893-6898. http://dx.doi.org/10.1073/pnas.1010894108

Pritchard JK, Stephens M, Donnelly P, 2000. Inference of population structure using multilocus genotype data. Genet 155: 945-959.

Reynolds M, Manes Y, Izanloo A, Langridge P, 2009. Phenotyping approaches for physiological breeding and gene discovery in wheat. Ann Appl Biol 155: 309-320. http://dx.doi.org/10.1111/j.1744-7348.2009.00351.x

Salvi S, Tuberosa R, 2005. To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 10: 297-304. http://dx.doi.org/10.1016/j.tplants.2005.04.008

Stojaković M, Jocković D, Nastasić A, Vasić A, Purar B, 2000. Characteristics of maize inbred lines originating from local populations. Cereal Res Commun 28: 299-306.

Stojaković M, Mitrović B, Zorić M, Ivanović M, Stanisavljević D, Nastasić A, Dodig D, 2015. Grouping pattern of maize test locations and its impact on hybrid zoning. Euphytica 204: 419-431. http://dx.doi.org/10.1007/s10681-015-1358-7

Stone M, 1974. Cross-validatory choice and assessment of statistical predictions. J R Stat Soc 36: 111-147.

Stricevic R, Djurovic N, Djurovic Z, 2011. Drought classification in Northern Serbia based on SPI and statistical pattern recognition. Meteorol Appl 18: 60-69. http://dx.doi.org/10.1002/met.207

Suzuki R, Shimodaira H, 2006. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinform 22: 1540-1542. http://dx.doi.org/10.1093/bioinformatics/btl117

Tuberosa R, Salvi S, 2006. Genomics-based approaches to improve drought tolerance of crops. Trends Plant Sci 11: 405-412. http://dx.doi.org/10.1016/j.tplants.2006.06.003

Vargas M, Crossa J, van Eeuwijk FA, Ramirez ME, Sayre K, 1999. Using partial least square regression, factorial regression, and AMMI models for interpreting genotype × environment interaction. Crop Sci 39: 955-967. http://dx.doi.org/10.2135/cropsci1999.0011183X003900040002x

Vargas M, van Eeuwijk FA, Crossa J, Ribaut JM, 2006. Mapping QTLs and QTL× environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor Appl Genet 112: 1009-1023. http://dx.doi.org/10.1007/s00122-005-0204-z

Xiao YN, Li XH, George ML, Li MS, Zhang SH, Zheng YL, 2005. Quantitative trait locus analysis of drought tolerance and yield in maize in China. Plant Mol Biol Rep 23: 155-165. http://dx.doi.org/10.1007/BF02772706

Yahdjian L, Sala OE, 2002. A rainout shelter design for intercepting different amounts of rainfall. Oecologia 133: 95-101. http://dx.doi.org/10.1007/s00442-002-1024-3

Zheng HJ, Wu AZ, Zheng CC, Wang YF, Cai R, Shen XF, Xu RR, Liu P, Kong LJ, Dong ST, 2009. QTL mapping of maize (Zea mays) stay-green traits and their relationship to yield. Plant Breed 128: 54-62. http://dx.doi.org/10.1111/j.1439-0523.2008.01529.x

Published
2017-01-20
How to Cite
Mikić, S., Zorić, M., Stanisavljević, D., Kondić-Špika, A., Brbaklić, L., Kobiljski, B., Nastasić, A., Mitrović, B., & Šurlan-Momirović, G. (2017). Agronomic and molecular evaluation of maize inbred lines for drought tolerance. Spanish Journal of Agricultural Research, 14(4), e0711. https://doi.org/10.5424/sjar/2016144-9116
Section
Plant breeding, genetics and genetic resources