Evaluation of the design effects of different agropastoral systems on the diversity and density of spiders

  • Melina S. Almada CONICET-EEA-INTA-Reconquista. Ruta 11 Km 773 (3560) Reconquista, Santa Fe http://orcid.org/0000-0003-0151-281X
  • Alda González CEPAVE–CONICET, Facultad de Ciencias Naturales y Museo de La Plata (UNLP). Boulevard 120 s/n e/61 y 62, 1900, La Plata
  • José A. Corronca CONICET-IEBI-UNSa, Av. Bolivia 5150, Salta
Keywords: araneofauna, agro-ecological design, biological control, environmental heterogeneity

Abstract

Sustainable agro-ecological design is challenging when the goal is self-regulation of the system. The objective of this study was to evaluate if the agropastoral design system affects the spider community, as spiders are the main predators in these production systems, and to determine those designs which maximize the diversity and density of spiders. The study was conducted during 2009/2010, at the Experimental Research Station of Agriculture (EEA-INTA) Reconquista (Santa Fe, Argentina) where we considered four different designs: C1 (five agricultural fields), C2 (three agricultural fields and four livestock fields), C3 (six agricultural fields and one livestock field) and C4 (five agricultural fields and one forest area). In each design, the spiders were collected by pitfall traps and suction samples with a G-Vac (garden-vacuum). The designs proposed were considered on the basis of environmental heterogeneity. The C4 treatment had the greatest number of species, followed by C2, C3 and C1 (183, 178, 144 and 142 species, respectively), and C2 presented the greatest abundance of spiders followed by C4, C3 and C1 (n=5708, 4785, 4271 and 3448, respectively). Eight guilds were present in C3 and C4. This study is the first to evaluate the diversity of spiders in agropastoral systems in Argentina. Our results show that designs that include more fields with livestock or equal to those for agriculture, as well as forest areas, increase environmental heterogeneity. Therefore, the presence of a biological controller and dominant predatory group will be possible with sustainable designs that have environmental heterogeneity, contributing to improved pest control in agricultural systems.

Downloads

Download data is not yet available.

References

Alderweireldt M, 1994. Habitat manipulations increasing spider densities in agroecosystems: possibilities for biological control? J Appl Entomol 118: 10-16. https://doi.org/10.1111/j.1439-0418.1994.tb00772.x

Almada MS, Sosa MA, González A, 2012. Araneofauna (Arachnida: Araneae) en cultivos de algodón (Gossypium hirsutum) transgénicos y convencionales en el norte de Santa Fe, Argentina. Int J Trop Biol 60: 611-623.

Altieri MA, 1999. The ecological role of biodiversity in agroecosystems. Agric Ecosyst Environ 74: 19-31. https://doi.org/10.1016/S0167-8809(99)00028-6

Armendano A, González A, 2009. Comunidad de arañas (Arachnida, Araneae) del cultivo de alfalfa (Medicago sativa) en Buenos Aires, Argentina. Int J Trop Biol 58: 747-757.

Armendano A, González A, 2011. Spider fauna associated with wheat crops and adjacent habitats in Buenos Aires, Argentina. Rev Mex Biodiv 82 (4): 1176-1182.

Avalos G, Damborsky MP, Bar ME, Oscherov EB, Porcel E, 2009. Composición de la fauna de Araneae (Arachnida) de la Reserva Provincial Iberá, Corrientes, Argentina. Int J Trop Biol 57: 339-351.

Bazzaz FA, 1975. Plant species diversity in old-field successional ecosystems in southern Illinois. Ecology 56 (2): 485-488. https://doi.org/10.2307/1934981

Beltramo J, Bertolaccini I, González A, 2006. Spiders of soybean crops in Santa Fe province, Argentina: influence of surrounding spontaneous vegetation on lot colonization. Bras J Biol 66: 29-41. https://doi.org/10.1590/s1519-69842006000500015

Benamú Pino MA, 2010. Composición y estructura de la comunidad de arañas en el sistema de cultivo de soja transgénica. Doctoral thesis. Univ. Nacional de La Plata, Argentina. 218 pp.

Bray JR, Curtis TJ, 1957. An ordination of the upland forest communities in southern Wisconsin. In: Analysis of ecological communities; McCune B, Grace JB (eds.). pp: 143-148. Gleneden Beach, OR, USA. https://doi.org/10.2307/1942268

Bromham L, Cardillo M, Bennett A, Elgar MA, 1999. Effects of stock grazing on the ground invertebrates fauna of woodland remnants. Aust J Ecol 24: 199-207. https://doi.org/10.1046/j.1442-9993.1999.00963.x

Cardoso P, Pekár S, Jocqué R, Coddington JA, 2011. Global patterns of guild composition and functional diversity of spiders. PLoS ONE 6(6): e21710. https://doi.org/10.1371/journal.pone.0021710

CES, 2012. Evolución de la producción agrícola argentina y provincial. Recorrido histórico desde la campaña 96/97. Centro de Estudios y Servicios Bolsa de Comercio de Santa Fe. http://ces.bcsf.com.ar. [27 Mar 2015].

Clark RJ, Gerard PJ, Mellsop JM, 2004. Spider biodiversity and density following cultivation in pastures in the Waikato, New Zealand. New Zeal J Agr Res 47: 247-259. https://doi.org/10.1080/00288233.2004.9513592

Clausen HIS, 1986. The use of spiders (Araneae) as ecological indicators. Bull British Arachn Soc 7: 83-86.

Corronca JA, Abdala CS, 1994. La fauna araneologica de la Reserva Ecológica "El Bagual", Formosa, Argentina. Aracnología Supl 9: 1-6.

Dennis P, Skartveit J, kunaver A, McCracken DI, 2015. The response of spider (Araneae) assemblages to structural heterogeneity and prey abundance in sub-montane vegetation modified by conservation grazing. Global Ecol Conserv 3: 715-728. https://doi.org/10.1016/j.gecco.2015.03.007

Díaz Porres M, Rionda MH, Duhour AE, Momo FR, 2014. Artrópodos del suelo: Relaciones entre la composición faunística y la intensificación agropecuaria. Ecología Austral 24: 327-334.

Foelix RF, 1982. Biology of spiders. Harvard Univ. Press, Cambridge, MA, USA. 306 pp.

García RR, Garcia U, Osoro K, Celaya R, 2011. Ground-dwelling arthropod assemblages of partially improved heathlands according to the species of grazer and grazing regime. Eur J Entomol 108: 107-115. https://doi.org/10.14411/eje.2011.014

Gilbert JA, Butt KR, 2009. Evaluation of digital photography as a tool for field monitoring in potentially inhospitable environments. Mires and Peat 5: Art. 5. http://www.mires-and-peat.net/volumes/map05/map0505.php.

Grismado C, 2007. Comunidades de arañas de la Reserva Natural Otamendi, Provincia de Buenos Aires. Riqueza específica y diversidad. Trabajo de Seminario. Universidad CAECE, Buenos Aires, Argentina. 97 pp.

Guzmán C, Melo OA, Lozano MD, Rivera FA, 2010. Colémbolos (Hexapoda) en un sistema silvopastoril de tres edades de establecimiento y un área arrocera del bosque seco tropical, en el Municipio de Piedras, Tolima. Bol Cient Mus Hist Nat 14 (2): 155-168.

Hammer O, Harper DAT, Ryan PD, 2012. PAST (Paleontological Statistics), 2.16. Software package for education and data analysis. Paleontología Electrónica 4: 1-9. http://folk.uio.no/ohammer/past/.

Isaia M, Bona F, Badino G, 2006. Influence of landscape diversity and agricultural practices on spider assemblage in Italian vineyards of Langa Astigiana (Northwest Italy). Environ Entomol 35: 297-307. https://doi.org/10.1603/0046-225X-35.2.297

Liljesthröm G, Minervino E, Castro D, González A, 2002. La comunidad de ara-as del cultivo de soja en la provincia de Buenos Aires, Argentina. Neotrop Entomol 31: 197-210. https://doi.org/10.1590/S1519-566X2002000200005

Luczak J, 1979. Spiders in agrocenoses. Pol Ecol Stud 5: 151-200.

Maelfait JP, Jocque R, Baert L, Desender K, 1990. Heathland management and spiders. Acta Zool Fenn 190: 261-166.

McCune B, Grace JB, 2002. Analysis of ecological communities. MjM Software Design, Gleneden Beach, OR, USA. 307 pp.

McCune B, Mefford MJ, 2011. PC-ORD. Multivariate analysis of ecological data. Version 6.0.

Meissle M, Lang A, 2005. Comparing methods to evaluate the effects of Bt maize and insecticide on spider assemblages. Agric Ecosyst Environ 107: 359-370. https://doi.org/10.1016/j.agee.2004.12.007

Muriel SB, Vélez LD, 2004. Evaluando la diversidad de plantas en los agroecosistemas como estrategia para el control de plagas. Manejo Integrado de Plagas y Agroecología 71: 13-20.

New TR, 2005. Invertebrate conservation and agricultural ecosystems. Cambridge University Press, Cambridge, UK. https://doi.org/10.1017/CBO9780511542114

Öberg S, Ekbom B, 2006. Recolonisation and distribution of spiders and carabids in cereal fields after spring sowing. Ann Appl Biol 149: 203-211. https://doi.org/10.1111/j.1744-7348.2006.00088.x

Peck JE, 2010. Multivariate analysis for community ecologists: Step-by-step using Pc-Ord. MjM Software Design. Gleneden Beach, OR, USA. 162 pp.

Pereyra F, 2003. Ecorregiones de la Argentina. Servicio Geológico Minero Argentino, Buenos Aires, Argentina. 182 pp.

Robertson MP, Harris KR, Coetzee JA, Foxcroft LC, Dippenaar-Schoeman AS, van Rensburg BJ, 2011. Assessing local scale impacts of Opuntia stricta (Cactaceae) invasion on beetle and spider diversity in Kruger National Park, South Africa. Afr Zool 46 (2): 205-223. https://doi.org/10.3377/004.046.0202

Roschewitz I, Thies C, Tscharntke T, 2005. Are landscape complexity and farm specialisation related to land-use intensity of annual crop fields? Agric Ecosyst Environ 105: 87-99. https://doi.org/10.1016/j.agee.2004.05.010

Rubio G, 2015. Diversidad de arañas (Araneae, Araneomorphae) en la Selva de Montaña: un caso de estudio en las Yungas argentinas. Graellsia 71 (2): 1-21. https://doi.org/10.3989/graellsia.2015.v71.134

Rubio G, Damborsky M, Corronca J, 2004. Araneofauna (Arachnida, Araneae) en un área natural protegida de la provincia de Corrientes, Argentina. Resúmenes de las Comunicaciones Científicas y Técnicas UNNE: B-048. http://www.unne.edu.ar/unnevieja/Web/cyt/com2004/index.htm.

Samu F, Szinetár C, 2002. On the nature of agrobiont spiders. J Arachnol 30: 389-402. https://doi.org/10.1636/0161-8202(2002)030[0389:OTNOAS]2.0.CO;2

Schmidt M, Tscharntke T, 2005. The role of perennial habitats for Central European farmland spiders. Agric Ecosyst Environ 105: 235-242. https://doi.org/10.1016/j.agee.2004.03.009

Schmidt MH, Carsten T, Wolfgang N, Tscharntke T, 2008. Contrasting responses of arable spiders to the landscape matrix at different spatial scales. J Biogeogr 35: 157-166.

Straub CS, Snyder WE, 2006. Experimental approaches to understanding the relationship between predator biodiversity and biological control. In: Trophic and guild interactions in biological control; Brodeur J, Boivin G (eds.). pp: 221-239. Springer, Dordrecht, The Netherlands. https://doi.org/10.1007/1-4020-4767-3_10

Sunderland K, Samu F, 2000. Effects of agricultural diversification on the abundance, distribution, and pest control potential of spiders: a review. Entomol Exp Appl 95: 1-13. https://doi.org/10.1046/j.1570-7458.2000.00635.x

Toti D, Coyle F, Miller J, 2000. A structured inventory of Appalachian grass bald and heath bald spider assemblages and a test of species richness estimator performance. J Arachnol 28: 329-345. https://doi.org/10.1636/0161-8202(2000)028[0329:ASIOAG]2.0.CO;2

Trumper EV, 2014. Resistencia de insectos a cultivos transgénicos con propiedades insecticidas. Teoría, estado del arte y desafíos para la República Argentina. Agriscientia 31 (2): 109-126.

Tsai ZI, Huang OS, Tso IM, 2006. Habitat management by aboriginals promotes high spider diversity on an Asian tropical island. Ecography 29: 84-94. https://doi.org/10.1111/j.2006.0906-7590.04425.x

Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S, 2008. Conservation biological control and enemy diversity on a landscape scale. Biol Control 45: 238-253. https://doi.org/10.1016/S1049-9644(08)00082-0

Uetz GW, 1979. The influence of variation in litter habitats on spider communities. Oecologia 40: 29-42. https://doi.org/10.1007/BF00388808

Uetz GW, 1991. Habitat structure and spider foraging (pp 182-189). In: Spiders in ecological webs; Wise DH (eds.). pp: 328. Cambridge University Press, Cambridge, UK. https://doi.org/10.1007/978-94-011-3076-9_16

Uetz GW, Halaj J, Cady AB, 1999. Guild structure of spiders in major crops. J Arachnol 27: 270-280.

Van Driesche R, Hoddle MS, Center TD, 2007. Control de plagas y malezas por enemigos naturales. USDA Forest Health Technology Enterprise Team, 751 pp.

Verhoef HA, Morin PJ, 2010. Community ecology, processes, models, and applications. Oxford University Press Inc., NY. 266 pp.

Warui CM, Villet MH, Young TP, Jocqué R, 2005. Influence of grazing by large mammals on the spider community of a Kenyan Savanna biome. J Arachnol 33: 269-279. https://doi.org/10.1636/CT05-43.1

Weyland F, Zaccagnini ME, 2008. Efecto de las terrazas sobre la diversidad de artrópodos caminadores en cultivo de soja. Ecología Austral 18: 357-366.

Wise DH, 1993. Spiders in ecological webs. Cambridge University Press, Cambridge, UK. 328 pp. https://doi.org/10.1017/CBO9780511623431

World Spider Catalog, 2016. Natural History Museum of Bern, version 17. http://wsc.nmbe.ch [15 Jan 2016].

Zehm A, Nobis M, Schwabe A, 2003. Multiparameter analysis of vertical vegetation structure based on digital image processing. Flora 98 (2): 142-160. https://doi.org/10.1078/0367-2530-00086

Published
2017-04-20
How to Cite
Almada, M. S., González, A., & Corronca, J. A. (2017). Evaluation of the design effects of different agropastoral systems on the diversity and density of spiders. Spanish Journal of Agricultural Research, 15(1), e0301. https://doi.org/10.5424/sjar/2017151-9712
Section
Agricultural environment and ecology