Flow resistance equations for mountain rivers
Abstract
Three models of flow resistance (a Keulegan-type logarithmic law and two models developed for large-scale roughness conditions: the full logarithmic law and a model based on an inflectional velocity profile) were calibrated, validated and compared using an extensive database (N = 1,533) from rivers and flumes, representative of a wide hydraulic and geomorphologic range in the field of gravel-bed and mountain channels. It is preferable to apply the model based on an inflectional velocity profile in the relative submergence (y/d90) interval between 0.5 and 15, while the full logarithmic law is preferable for values below 0.5. For high relative submergence, above 15, either the logarithmic law or the full logarithmic law can be applied. The models fitted to the coarser percentiles are preferable to those fitted to the median diameter, owing to the higher explanatory power achieved by setting a model, the smaller difference in the goodness-of-fit between the different models and the lower influence of the origin of the data (river or flume).Downloads
© CSIC. Manuscripts published are the property of Consejo Superior de Investigaciones Científicas, and quoting this source is a requirement for any partial or full reproduction.
Forest Systems is an Open Access Journal. All articles are distributed under the terms of the Creative Commons Attribution 4.0 International (CC BY 4.0) License. You may read here the basic information and the legal text of the license. The indication of the license CC-by must be expressly stated in this way when necessary.