Post-fire recovery of ecosystem carbon pools in a tropical mixed pine-hardwood forest

  • Shatya Devi Quintero-Gradilla Centro Universitario de la Costa Sur de la Universidad de Guadalajara http://orcid.org/0000-0002-9723-852X
  • Angelina Martínez-Yrizar Instituto de Ecología, Universidad Nacional Autónoma de México, Colosio y Sahuaripa, C.P. 83250, Hermosillo, Sonora, México
  • Felipe García-Oliva Instituto de Investigaciones en Ecosistemas y Sustentabilidad. Universidad Nacional Autónoma de México. Antigua Carretera a Pátzcuaro 8701, Morelia, Michoacán. México. C. P. 58190
  • Ramón Cuevas-Guzmán Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional No. 151, Autlán de la Grana, Jalisco, C.P. 48900
  • José Enrique Jardel-Peláez Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Av. Independencia Nacional No. 151, Autlán de la Grana, Jalisco, C.P. 48900

Abstract

Aim of the study: To analyze the recovery pattern of carbon pools in terms of size and the relative contribution of each pool to total ecosystem C along a fire chronosequence of tropical mixed pine-hardwood forest.

Area of the study: Las Joyas Research Station (LJRS), core zone of Sierra de Manantlán Biosphere Reserve (SMBR) in the state of Jalisco, central western Mexico.

Materials and methods: Carbon stored in aboveground plant biomass, standing dead trees, downed woody debris, forest floor, fine roots and mineral soil, was compared with a nested analysis of variance (ANOVA) in post-fire stands of eight-year-old, 28- and 60-year-old stands of mixed Pinus douglasiana-hardwood forest.

Main results: The total ecosystem carbon in eight-year-old stands was 50% lower than that of 60-year-old stands. Carbon content in the biomass and mineral soil increased with stand age. The carbon in the biomass recovered to the undisturbed forest in the 28 years of succession. The main C storage in the eight-year-old stands were the mineral soil (64%) and downed woody debris (18%), while in the 28- and 60-year-old stands, live tree biomass and mineral soil were the two largest components of the total C pool (43% and 46%, respectively).

Research highlights: We found a significant effect of high-severity fire events on ecosystem C storage and a shift in carbon distribution. The relatively fast recovery of C in ecosystem biomass suggests that mixed Pinus douglasiana hardwood forest possess functional traits that confer resilience to severe fire events.

Key words: chronosequence; carbon dynamics; mineral soil; Pinus douglasiana; fire effects.

Abbreviations used: LJRS, Las Joyas Research Station; DBH, diameter at breast height; DL, duff layer; LL, litter layer; DWD, downed woody debris; ANOVA, analysis of variance; CO2, carbon dioxide; SMBR, Sierra de Manantlán Biosphere Reserve; C, carbon. AGV, above ground vegetation.

Downloads

Download data is not yet available.

References

Agee JK, 1993. Fire ecology of Pacific Northwest Forest. Island Press, Washington, DC, USA. 493 pp.

Agee JK, Skinner CN, 2005. Basic principles of forest fuel reduction treatments. Forest Ecol Manag 211: 83-96. https://doi.org/10.1016/j.foreco.2005.01.034

Alanís-Rodríguez E, Jiménez-Pérez J, Valdecantos-Dema A, González-Tagle MA, Aguirre-Calderón OA, Treviño-Garza EJ, 2012. Composición y diversidad de la regeneración natural en comunidades de Pinus-Quercus sometidas a una alta recurrencia de incendios en el noreste de México. Rev Mex Biodivers 83: 1208-1214. https://doi.org/10.22201/ib.20078706e.2012.4.1013

Alexander HD, Mack MC, Goetz S, Loranty MM, Beck PSA, Earl K, Zimov S, Davydov S, Thompon CC, 2012. Carbon accumulation patterns during post-fire succession in cajander larch (Larix cajanderi) forests of Siberia. Ecosystems 15: 1065-1082. https://doi.org/10.1007/s10021-012-9567-6

Alvarado-Celestino E, Morfín-Ríos JE, Jardel-Pelaéz EJ, Vihnanek RE, Wright DK, Michel-Fuentes JM, Wright CS, Ottmar RD, Sandberg DV, Nájera-Díaz A, 2008. Fotoseries para la cuantificación de combustibles forestales de México: bosques montanos subtropicales de la Sierra Madre del Sur y bosques templados y matorral submontano del norte de la Sierra Madre Oriental. University of Washington, USDA, Forest Service, Special Publication No. 1. https://www.fs.fed.us/pnw/fera/publications/fulltext/PhotoSeriesMexicoUW-FERAPublication.pdf

Balcázar OE, 2011. Patrones geoecológicos de incendios forestales en la Reserva de la Biosfera Sierra de Manantlán. Master Tesis, Universidad de Guadalajara, Autlán de la Grana.

Boerner REJ, 1981. Forests structure dynamics following wildfire and prescribed burning in the New Jersey Pine Barrens. Am Midl Nat 105: 321-333. https://doi.org/10.2307/2424750

Bormann FH, Likens GE, 1979. Pattern and process in a forested ecosystem. Springer-Verlag, New York, NY, USA, 253 pp. https://doi.org/10.1007/978-1-4612-6232-9

Bowman DMJS, Murphy BP, Boer MM, Bradstock RA, Cary GJ, Cochrane MA, Fensham R J, Krawchuk MA, Price OF, Williams RJ, 2013. Forest fire management, climate change, and the risk of catastrophic carbon losses. Front Ecol Environ 11: 66-68. https://doi.org/10.1890/13.WB.005

Brais S, Sadi R, Bergeron Y, Grenier Y, 2005. Coarse woody debris dynamics in a post-fire jack pine chronosequence and its relation with site productivity. Forest Ecol Manag 220: 216-226. https://doi.org/10.1016/j.foreco.2005.08.013

Brown JK, 1974. Handbook for inventorying downed woody material. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Ogden, UT, USA. Gen Tech Rep INT-1624 1-24.

Carlson CH, Dobrowski SZ, Safford HD, 2012. Variation in tree mortality and regeneration affect forest carbon recovery following fuel treatments and wildfire in the Lake Tahoe Basin, California, USA. Carbon Balance Manage 7: 7. https://doi.org/10.1186/1750-0680-7-7

Cerano-Paredes J, Villanueva-Díaz J, Cervantes-Martínez R, Fulé P, Yocom L, Esquivel-Arriaga G, Jardel-Peláez E, 2015. Historia de incendios en un bosque de pino de la sierra de Manantlán, Jalisco, México. Bosque 36: 41-52. https://doi.org/10.4067/S0717-92002015000100005

Cruz-Martínez Z, 2007. Sistema de ecuaciones para estimación y partición de biomasa aérea en Atopixco, Zacualtipan, Hidalgo, México. Master Thesis. Universidad Autónoma Chapingo. Texcoco.

Cuevas-Guzmán R, Jardel EJ, (Eds), 2004. Flora y Vegetación de la Estación Científica Las Joyas. Universidad de Guadalajara, Guadalajara, Jal, Mex. 294 pp.

Dore S, Kolb T E, Montes-Helu M, Sullivan BW, Winslow WD, Hart SC, kaye JP, Koch GW, Hungate BA, 2008. Long-term impact of a stand-replacement fire on ecosystem CO2 exchange of a ponderosa pine forest. Global Change Biol 14: 1801-1820. https://doi.org/10.1111/j.1365-2486.2008.01613.x

Gilliam FS, 2007. The ecological significance of the herbaceous layer in temperate forest ecosystems. Bioscience 57: 845-858. https://doi.org/10.1641/B571007

Gough CM, Vogel CS, Harrold KH, Georges K, Curtis PS, 2007. The legacy of harvest and fire on ecosystem carbon storage in a northern temperate forest. Global Change Biol 13: 1935-1949. https://doi.org/10.1111/j.1365-2486.2007.01406.x

Harden JW, Trumbore SE, Stocks BJ, Hirsch A, Gower ST, O'Neill KP, Kasischke ES, 2000. The role of fire in the boreal carbon budget. Global Change Biol 6: 174-184. https://doi.org/10.1046/j.1365-2486.2000.06019.x

Harmon ME, Framklin JF, Swason FJ, Sollins P, Gregory SV, lattin JD, Anderson NH, Cline SP, Aumen NG, Sedell JR, 1986. Ecology of coarse woody debris in temperate ecosystems. Adv Ecol Res 15: 133-301. https://doi.org/10.1016/S0065-2504(08)60121-X

Howard EA, Gower ST, Foley J, Kucharik CJ, 2004. Effects of logging on carbon dynamics of a jack pine forest in Saskatchewan, Canada. Global Change Biol 10: 1267-1284. https://doi.org/10.1111/j.1529-8817.2003.00804.x

Hurteau MD, North M, 2009. Fuel treatment effects on tree-based carbon storage and emissions under modeled wildfire scenarios. Front Ecol Environ 7: 409-414. https://doi.org/10.1890/080049

Hurteau MD, Koch GW, Hungate BA, 2008. Carbon protection and fire risk reduction: toward a full accounting of forest carbon offsets. Front Ecol Environ 6: 493-498. https://doi.org/10.1890/070187

Hurteau MD, Brooks ML, 2011. Short- and long-term effects of fire on carbon in US dry temperate forest systems. BioScience 61: 139-146. https://doi.org/10.1525/bio.2011.61.2.9

IPCC, 2003. Good practice guidance on land use, land-use change and forestry. Institute for Global Environmental Strategies (IGES). https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/GPG_LULUCF_FULL.pdf

Jardel-Peláez EJ, 1991. Perturbaciones naturales y antropogénicas y su influencia en la dinámica sucesional de los bosques de Las Joyas, Sierra de Manantlán, Jalisco. Tiempos de Ciencia 22: 9-26.

Jardel EJ, 2008. Sucesión ecológica y restauración de bosques subtropicales de montaña en la Estación Científica Las Joyas, México. In: Restauración de bosques en América Latina; González-Espinosa M, Rey-Benayas JM, Ramírez-Marcial N (eds). pp: 77-97. Fundación Internacional para la Restauración de Ecosistemas y Mundi-Prensa, Distrito Federal.

Jules MJ, Sawyer JO, Jules ES, 2008. Assessing the relationships between stand development and understory vegetation using a 420-year chronosequence. Forest Ecol Manag 255: 2384-2393. https://doi.org/10.1016/j.foreco.2007.12.042

Kane VR, Lutz JA, Roberts SL, Smith DF, McGaughey RJ, Povak NA, Brooks ML, 2013. Landscape-scale effects of fire severity on mixed-conifer and red fir forest structure in Yosemite National Park. Forest Ecol Manag 287: 17-31. https://doi.org/10.1016/j.foreco.2012.08.044

Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan M G, 2006, Carbon storage on landscapes with stand-replacement fires. BioScience 56: 598-606. https://doi.org/10.1641/0006-3568(2006)56[598:CSOLWS]2.0.CO;2

Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG, 2013. Post-fire changes in forest carbon storage over a 300-year chronosequence of Pinus contorta-dominated forests. Ecol Monogr 83: 49-66. https://doi.org/10.1890/11-1454.1

Keeley JE, Zedler PH, 1998. Evolution of life histories in Pinus. In: Ecology and biogeography of Pinus, Richardson DM, (ed). Pp: 219-250. Cambridge University Press, Cambridge.

Keyser TL, Lentile LB, Smith FW, Shepperd WD, 2008. Changes in forests structure after a large, mixed-severity wildfire in ponderosa pine forests of the Black Hills, South Dakota, USA. Forests Sci 54: 328-338.

Litton CM, Ryan MG, Knight DH, 2004. Effects of tree density and stand age on carbon allocation patterns in postfire lodgepole pine. Ecol Appl 14: 460-475. https://doi.org/10.1890/02-5291

MacKenzie DM, DeLuca TH, Sala A, 2004. Forest structure and organic matter analysis along a fire chronosequence in the low elevation forests of western Montana. Forest Ecol Manag 203: 331-343. https://doi.org/10.1016/j.foreco.2004.08.003

Martínez RLM, Delgado IR, Flores RI, 1993. Suelos de la Estación Científica Las Joyas de la Reserva de la Biosfera Sierra de Manantlán, Jalisco. Agrociencia 4: 103-115.

Mitchell S, 2015. Carbon dynamics of mixed- and high-severity wildfires: pyrogenic CO2 emissions, postfire carbon balance, and succession. In: The ecological importance of mixed-severity fires; DellaSala DA, Hanson CT (eds). pp: 290-309. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-12-802749-3.00010-4

Morfín-Rios JE, Jardel PEJ, Alvarado CE, Miche FJM, 2012. Caracterización y cuantificación de combustibles forestales. Comisión Nacional Forestal-Universidad de Guadalajara, Guadalajara; Jal, Mex. 95 pp.

Neary DG, Overby ST, 2006. Wildfire and post-fire erosion impacts on forest ecosystem carbon and nitrogen: An analysis. Forest Ecol Manage 234S: S162. https://doi.org/10.1016/j.foreco.2006.08.213

Oliver CD, Larson BC, 1990. Forest stand dynamics. MacGraw-Hill, Nueva York, NY, USA. 467 pp.

Ottmar RD, Andreu A, 2007. Litter and duff bulk densities in the Southern United States. USDA Forest Service. https://www.frames.gov/catalog/25244.

Pompa-García M, Sigala-Rodríguez JA, 2017. Variation of carbon uptake from forest species in Mexico: a review. Madera y Bosques 23: 225-235. https://doi.org/10.21829/myb.2017.2321512

Pregitzer KS, Euskirchen ES, 2004. Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biol 10: 2052-2077. https://doi.org/10.1111/j.1365-2486.2004.00866.x

Quintero-Gradilla SD, García-Oliva F, Cuevas-Guzmán R, Jardel-Peláez EJ, Martínez-Yrizar A, 2015. Soil carbon and nutrient recovery after high-severity wildfire in Mexico. Fire Ecology 11: 45-61. https://doi.org/10.4996/fireecology.1103045

Quintero-Gradilla SD, Jardel-Peláez EJ, Cuevas-Guzmán R, García-Oliva F, Martínez-Yrizar A, 2019. Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques 25: e2531888. https://doi.org/10.21829/myb.2019.2531888

Savage M, Mast JM, 2005. How resilient are southwestern ponderosa pine forests after crown fires? Can J Ror Res 35: 967-977. https://doi.org/10.1139/x05-028

Scott AC, Bowman DM, Bond WJ, Pyne SJ, Alexander ME, 2014. Fire on Earth. An introduction. Wiley Blackwell, Chicheste, UK. 413 pp.

Schoennagel T, Balch JK, Brenkert-Smith H, Dennison PE, Harvey BJ, Krawchuk MA, Mietkiewicz N, Morgan P, Moritz MA, et al., 2017. Adapt to more wildfire in western North America forests as climate changes. Proc Natl Acad Sci 114: 4582-4590. https://doi.org/10.1073/pnas.1617464114

Seedre M, Shrestha BM, Chen HYH, Colombom S, Jõgiste K, 2011. Carbon dynamics of North American boreal forest after stand replacement wildfire and clearcut logging. J Forest Res 16: 168-183. https://doi.org/10.1007/s10310-011-0264-7

Seedre M, Taylor AR, Bassard BW, Chen HYH, Jõgiste K, 2014, Recovery of ecosystem carbon stocks in young boreal forests: a comparison of harvesting and wildfire disturbance. Ecosystems 17: 851-863. https://doi.org/10.1007/s10021-014-9763-7

Six J, Conant RT, Paul EA, Paustian K, 2002. Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241: 155-176. https://doi.org/10.1023/A:1016125726789

Spies AT, Franklin JF, Thomas TB, 1988. Coarse woody debris in Douglas-Fir forests of western Oregon and Washington. Ecology 69: 1689-1702. https://doi.org/10.2307/1941147

Syphard AD, Butsic V, Bar-Massada A, Keeley JE, Tracey J, Fisher RN, 2016. Setting priorities for private land conservation in fire-prone landscapes: Are fire risk reduction and biodiversity conservation competing or compatible objectives? Ecol Society 21:2. https://doi.org/10.5751/ES-08410-210302

Tilman D, Reich P, Phillips H, Menton M, Patel A, Vos E, Peterson D, Knops J, 2000. Fire suppression and ecosystem carbon storage. Ecology 81: 2680-2685. https://doi.org/10.1890/0012-9658(2000)081[2680:FSAECS]2.0.CO;2

Van Wagner CE, 1982. Practical aspects of the line intersect method. Project report for Canadian Forestry Service, project PI-X-12. Available at http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/6862.pdf

Vargas-Larreta B, López-Sánchez CA, Corral-Rivas JJ, López-Martínez JO, Aguirre-Calderón CG, Álvarez-González JG, 2017. Allometric equations for estimating biomass and carbon stocks in the temperate forests of North-Western Mexico. Forests 8: 269. https://doi.org/10.3390/f8080269

Waddell KL, 2002. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol Indic 1: 139-153. https://doi.org/10.1016/S1470-160X(01)00012-7

Walker LR, Wardle DA, Bardgett RD, Clarkson BD, 2010. The use of chronosequences in studies of ecological succession and soil development. J Ecol 98: 725-736. https://doi.org/10.1111/j.1365-2745.2010.01664.x

Wang C, Gower ST, Wang Y, Zhao H, Yang P, Bond-Lamberty BP, 2001. The influence of fire on carbon distribution and net primary production of boreal Larix gmelinii forests in north-eastern China. Glob Change Biol 7: 719-730. https://doi.org/10.1046/j.1354-1013.2001.00441.x

Wang C, Bond-Lamberty B, Gower ST, 2003. Carbon distribution of a well- and poorly-drained black spruce fire chronosequence. Glob Change Bio 9: 1066-1079. https://doi.org/10.1046/j.1365-2486.2003.00645.x

Westerling AL, Hidalgo H, Cayan DR, Swetnam T, 2006. Warming and earlier spring increases western US forest wildfire activity. Science 313: 940-943. https://doi.org/10.1126/science.1128834

Williams RJ, Bradstock RA, Barrett D, Beringer J, Boer MM, Cary GJ, Cook GD, Gill AM, Hutley LB, Keith H, et al., 2012. Fire regimes and carbon in Australian vegetation. In: Flammable Australia: Fire Regimes, Biodiversity and Ecosystems in a Changing World; Bradstock A, Gill AM, Williams RJ (eds). pp 273-291. CSIRO Publishing Collingwood, Victoria. https://doi.org/10.1071/9780643104839

Zar JH, 1999. Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

Published
2020-05-14
How to Cite
Quintero-GradillaS. D., Martínez-YrizarA., García-OlivaF., Cuevas-GuzmánR., & Jardel-PeláezJ. E. (2020). Post-fire recovery of ecosystem carbon pools in a tropical mixed pine-hardwood forest. Forest Systems, 29(1), e001. https://doi.org/10.5424/fs/2020291-14984
Section
Research Articles